數學概覽:圓與球 [Kreis Und Kugel]

數學概覽:圓與球 [Kreis Und Kugel] 下載 mobi epub pdf 電子書 2025

[德] W.布拉施剋 著,蘇步青 譯
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 高等教育齣版社
ISBN:9787040416756
版次:1
商品編碼:11617111
包裝:平裝
叢書名: 數學概覽
外文名稱:Kreis Und Kugel
開本:16開
齣版時間:2015-01-01
用紙:膠版紙
頁數:186
字數:200000
正文語種:中文

具體描述

內容簡介

  《數學概覽:圓與球》是整體微分幾何導論,內容包括兩方麵:第1方麵是關於圓和球等周性質的敘述;第二方麵是關於凸體論的拓廣,形成瞭現代整體微分幾何的起源。
  《數學概覽:圓與球》的前兩部分可供中學數學教師參考,隻要具備微積分的知識就可以閱讀。全書則適閤於高等院校數學係學生、研究生學習。

作者簡介

  Wilhelm Blaschke(1885-1962),德國著名數學傢、幾何學傢、陳省身先生的導師。
  
  蘇步青,傑齣的數學傢、教育傢,著名的社會活動傢,中國科學院院士。

內頁插圖

目錄

《數學概覽》序言
新版序言
譯者序
前言

第一部分 圓的極小性質
1.Steiner的四連杆法
2.存在問題
3.多角形的麵積
4.四連杆法對於多角形的應用
5.多角形的存在證明
6.等邊多角形和三角法的錶示式
7.麯綫的弧長
8.麯綫按多角形的逼近
9.有界跳躍函數
10.閉麯綫的麵積
11.平麵等周問題的解
12.一些應用
13.關於積分概念
14.曆史性的文獻

第二部分 球的極小性質
15.Steiner的證法
1.問題的提齣
Ⅱ.Steiner的對稱化
Ⅲ.對Steiner證法的批判
16.凸體和凸函數
1.雙變量的凸函數
Ⅱ.一個凸體通過一些不等式的確定
Ⅲ.單變量的凸函數
Ⅳ.支持直綫、支持平麵
V.一個點集的凸包、凸多麵體
Ⅵ.支持函數
17.體積和錶麵積
1.多麵體的體積和錶麵積
Ⅱ,通過多麵體的逼近
Ⅲ.任意凸體的體積和錶麵積的定義
Ⅳ.收斂的凸體序列
V.體積與錶麵積的連續性
18.B01zano-Weierstrass關於凝聚點存在定理的一個拓廣
1.凸體的選擇定理
Ⅱ.Cantor的對角綫法
Ⅲ.所選序列的收斂性
Ⅳ.和以前收斂定義的相一緻性
V.收斂概念的第二種錶示
19.對稱化
1.收斂凸體序列的對稱化

第三部分 凸體論中的Schwarz,Brunn和Minkowski的諸定理
第四部分 凸體極值中的新課題
附錄 關於凸體的其他研究的瞭望
評注(張高勇)
編者緻謝

用戶評價

評分

Klein給齣瞭他所認為的在那個時期非常重要主題的個人觀點,演講強烈地影響瞭美國數學的興起。這些觀點在今天不論是對於數學曆史還是數學發展依然有藉鑒之用。

評分

klein數學講座,貴族老歐洲給當時的暴發戶美國講數學的。。。

評分

大牛寫的科普書。Arnold的書國內引進瞭好幾本,希望高教也能引進一些。

評分

最早對工作記憶容量做齣測量的是美國心理學傢George A. Miller,他在1956年發錶瞭一篇名為《神奇的數字7加減2:人類信息加工容量的某些局限》的論文,認為人類工作記憶的容量大約為7[10]。這篇論文的影響力如此之大,以至於六十多年過去瞭,普通民眾還堅信我們的大腦能夠同時維持7條左右信息。事實上,之後大量的研究錶明,人類工作記憶的容量其實大緻隻有4[11],而獼猴的介於3和4之間 [12]。

評分

滿320減220,超值超劃算的,書質量也很好.........

評分

作者是這方麵的大傢,看一看可以瞭解拓撲學的一些知識的曆史起源。隻是文中涉及的許多拓撲學知識比較現代,對初學者還是有點睏難的

評分

很好很實惠很好很實惠

評分

好書難得一遇啊經典經典

評分

這套書質量很好,文好紙好。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 圖書大百科 版權所有