可压缩流与欧拉方程(英文版) [Compressible Flow and Euler's Equations]

可压缩流与欧拉方程(英文版) [Compressible Flow and Euler's Equations] pdf epub mobi txt 电子书 下载 2025

[美] 克里斯托多罗(Demetrios Christodoulou),缪爽 著
承接 住宅 自建房 室内改造 装修设计 免费咨询 QQ:624617358 一级注册建筑师 亲自为您回答、经验丰富,价格亲民。无论项目大小,都全力服务。期待合作,欢迎咨询!QQ:624617358
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 高等教育出版社
ISBN:9787040400984
版次:1
商品编码:11533573
包装:精装
外文名称:Compressible Flow and Euler's Equations
开本:16开
出版时间:2014-08-01
用纸:胶版纸
页数:580
字数:700000
正文语种:英文

具体描述

内容简介

  《可压缩流与欧拉方程(英文版)》主要考虑三维空间中,其初值在单位球面外为常值的任意状态方程的经典可压缩欧拉方程。当初值与常状态差别适当小时,我们建立的定理可以给出关于解的完整描述。特别地,解的定义域的边界包含一个奇异部分,在那里波前的密度将会趋向于无穷大,从而激波形成。在《可压缩流与欧拉方程(英文版)》中,我们采用几何化方法得到了关于这个奇异部分的完整的几何描述以及解在这部分性态的详细分析,其核心概念是声学时空流形。
  与相关领域中其他数学家的工作相比,《可压缩流与欧拉方程(英文版)》的结果相对完整并且具有一般性。与本书作者之前的一个关于相对论流体的工作相比,《可压缩流与欧拉方程(英文版)》不仅给出了更简单且自成体系的证明,而且还把某些结论做得更优。同时本书还详细解释了证明方法中的主要思想,讨论了只在非相对论情形出现的一些几何上的性质。
  本书可供从事偏微分方程研究,特别是从事流体动力学研究的数学家参考。

内页插图


用户评价

评分

讲述了微分流形和拓扑流形的结构的研究是现代数学的重要分支。随着20世纪50—60年代Milnor发现高维球面上的奇异微分结构和SmaIe证明了高维的Poincare猜想,流形拓扑学的研究进入了全新的领域,来自代数、代数拓扑和几何拓扑的诸多工具得到了广泛的应用。但是这也导致这一领域的文献较为分散和专门,不易被初学者所掌握。

评分

计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。

评分

这次买书还是小划算的,就又买多了,要忍住哈?,下次再买点吧

评分

  当于品和Garving K. Luli将翻译好的稿件发给塞尔先生的时候, 我就着手准备出版计划。 我以为塞尔先生也只是过过目,不会花费太长的时间就能返回给我。哪知,刚开始塞尔先生只是在PDF上修改,之后不过瘾,觉得这里应该增加内容,那里应该改写,最后将TEX文件拿走,直接在TEX文件上修改。之后我每隔一阵子就给他写信,询问进度,塞尔先生都非常及时回复,告诉我他正在改什么,还计划增加什么内容。这样大约又过了一年多的时间。塞尔先生将本来只有100页左右的书稿扩充成近200页的具有非常完整体系的著作。像他这样伟大的数学家,对书稿都尚且如此认真,其严谨的治学态度可见一斑;反观,相比我打过交道的一些老师,随便交来的稿子,编辑看过之后提出很多问题并提出希望做进一步修改,都只是针对编辑提出问题作出修改后完全不顾其他地方可能也会存在类似的错误,也许这就是这些人一直成为不了数学大家的原因之一吧。

评分

不错。。。。。。。。。。。。。。。。。。

评分

很不错的书,内容很详细,很适合自己!真心不错!

评分

内容很好,快递相对较快,包装很完整。

评分

讲述了微分流形和拓扑流形的结构的研究是现代数学的重要分支。随着20世纪50—60年代Milnor发现高维球面上的奇异微分结构和SmaIe证明了高维的Poincare猜想,流形拓扑学的研究进入了全新的领域,来自代数、代数拓扑和几何拓扑的诸多工具得到了广泛的应用。但是这也导致这一领域的文献较为分散和专门,不易被初学者所掌握。

评分

大师陈先生的书,很不错。精装版本,印刷很好很好。内容留着慢慢欣赏了。高教最近出的书都很不错哦。例如美国数学会影印系列

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有