随机过程探究 [Adventures in Stochastic Processes]

随机过程探究 [Adventures in Stochastic Processes] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
雷斯尼克 编



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-31

类似图书 点击查看全场最低价

图书介绍

出版社: 世界图书出版公司
ISBN:9787510029721
版次:1
商品编码:10859130
包装:平装
外文名称:Adventures in Stochastic Processes
开本:24开
出版时间:2011-01-01
页数:626
正文语种:英文


相关图书





图书描述

内容简介

随机过程是建立各种类型的大量随机变量现象模型的必要依据,作为应用概率方向的一个工具,书中将离散空间,Markov链,更新理论,点过程,分支过程,随机游程,Brownian运动,这些论题都是生动地展现给读者。《随机过程探究》表述灵活,大量的例子,练习和应用,并有的计算机程序作支持,使得内容的立体感增强,易于理解,可以作为应用科学领域不同层次水平学生的对随机过程的入门教程。每章末附有大量的补充练习。

目录

Preface
CHAPTER 1.PRELIMINARIES" DISCRETE INDEX SETS AND/OR DISCRETE STATE SPACES
1.1.Non-negative integer valued random variables
1.2.Convolution
1.3.Generating functions
1.3.1.Differentiation of generating functions
1.3.2.Generating functions and moments
1.3.3.Generating functions and convolution
1.3.4.Generating functions, compounding and random sums
1.4.The simple branching process
1.5.Limit distributions and the continuity theorem
1.5.1.The law of rare events
1.6.The simple random walk
1.7.The distribution of a process*
1.8.Stopping times*
1.8.1.Wald's identity
1.8.2.Splitting an iid sequence at a stopping time
Exercises for Chapter 1

CHAPTER 2.MARKOV CHAINS
2.1.Construction and first properties
2.2.Examples
2.3.Higher order transition probabilities
2.4.Decomposition of the state space
2.5.The dissection principle
2.6.Transience and recurrence
2.7.Periodicity
2.8.Solidarity properties
2.9.Examples
2.10.Canonical decomposition
2.11.Absorption probabilities
2.12.Invariant measures and stationary distributions
2.12.1.Time averages
2.13.Limit distributions
2.13.1 More on null recurrence and transience*
2.14.Computation of the stationary distribution
2.15.Classification techniques
Exercises for Chapter 2

CHAPTER 3.RENEWAL THEORY
3.1.Basics
3.2.Analytic interlude
3.2.1.Integration
3.2.2.Convolution
3.2.3.Laplace transforms
3.3.Counting renewals
3.4.Renewal reward processes
3.5.The renewal equation
3.5.1.Risk processes*
3.6.The Poisson process as a renewal process
3.7.Informal discussion of renewal limit theorems; regenerative processes
3.7.1 An informal discussion of regenerative processes
3.8.Discrete renewal theory
3,9.Stationary renewal processes* .
3.10.Blackwell and key renewal theorems* .
3.10.1.Direct Riemann integrability*
3.10.2.Equivalent forms of the renewal theorems*
3.10.3.Proof of the renewal theorem*
3.11.Improper renewal equations
3.12.More regenerative processes*
3.12.1.Definitions and examples*
3.12.2.The renewal equation and Smith's theorem*
3.12.3.Queueing examples
Exercises for Chapter 3

CHAPTER 4.POINT PROCESSES
4.1.Basics
4.2.The Poisson process
4.3.Transforming Poisson processes
4.3.1.Max-stable and stable random variables*
4.4.More transformation theory; marking and thinning
4.5.The order statistic property
4.6.Variants of the Poisson process
4.7.Technical basics*
4.7.1.The Laplace functional*
4.8.More on the Poisson process*
4.9.A general construction of the Poisson process; a simple derivation of the order statistic property*
4.10.More transformation theory; location dependent thinning*
4.11.Records*
Exercises for Chapter 4

CHAPTER 5.CONTINUOUS TIME MARKOV CHAINS
5.1.Defiuitions and construction
5.2.Stability and explosions
5.2.1.The Markov property* .
5.3.Dissection
5.3.1.More detail on dissection*
5.4.The backward equation and the generator matrix
5.5.Stationary and limiting distributions
5.5.1.More on invariant measures*
5.6.Laplace transform methods
5.7.Calculations and examples
5.7.1.Queueing networks
5.8.Time dependent solutions*
5.9.Reversibility
5.10.Uniformizability
5.11.The linear birth process as a point process
Exercises for Chapter 5

CHAPTER 6.BROWNIAN MOTION
6.1.Introduction
6.2.Preliminaries
6.3.Construction of Brownian motion*
6.4.Simple properties of standard Brownian motion
6.5.The reflection principle and the distribution of the maximum
6.6.The strong independent increment property and reflection*
6.7.Escape from a strip
6.8.Brownian motion with drift
6.9.Heavy traffic approximations in queueing theory
6.10.The Brownian bridge and the Kolmogorov--Smirnov statistic.
6.11.Path properties*
6.12.Quadratic variation
6.13.Khintchine's law of the iterated logarithm for Brownian motion
Exercises for Chapter 6

CHAPTER 7.THE GENERAL RANDOM WALK*
7.1.Stopping times
7.2.Global properties
7.3.Prelude to Wiener-Hopf: Probabilistic interpretations of transforms
7.4.Dual pairs of stopping times
7.5.Wiener-Hopf decompositions
7.6.Consequences of the Wiener-Hopf factorization
7.7.The maximum of a random walk
7.8.Random walks and the G/G/1 queue
7.8.1.Exponential right tail
7.8.2.Application to G/M/1 queueing model
7.8.3.Exponential left tail
7.8.4.The M/G/1 queue
7.8.5.Queue lengths
References
Index

前言/序言



随机过程探究 [Adventures in Stochastic Processes] 下载 mobi epub pdf txt 电子书 格式

随机过程探究 [Adventures in Stochastic Processes] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

随机过程探究 [Adventures in Stochastic Processes] 下载 mobi pdf epub txt 电子书 格式 2025

随机过程探究 [Adventures in Stochastic Processes] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

老板要讲随机系统,推荐了基本书。其中的一本。

评分

不错不凑不错不错不粗不错不粗粗布哦

评分

理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。随机过程一般理论的研究通常认为开始于20世纪30年代。1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛钦发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。

评分

3.希望世图可以影印出版更多的好书。

评分

质量很不错,暑假学习一下

评分

不错,很好的啦啦

评分

随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。

评分

好书,作者也牛,质量很好,紫薯布丁

评分

类似图书 点击查看全场最低价

随机过程探究 [Adventures in Stochastic Processes] mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有