內容簡介
In the preparation of this volume we were fortunate to receive advice from C. Berning, P. Deift, V. Enss, G. Hagedorn, J. Holder, T. Ikebe, M. Klaus, S. Kuroda, J. Morgan III, S. Pinault, J. Rauch, S. Ruijsenaars, and L. Smith. We are grateful to these individuals and others whose comments made this book better.
目錄
Preface
Introduction
Contents of Other Volumes
XI: SCATTERING THEORY
1. An overview of scattering phenomena
2. Classical particle scattering
3. The basic principles of scattering in Hilbert space
Appendix 1 Stationary phase methods
Appendix 2 Trace ideal properties of f(x)g(-i)
Appendix 3 A general invariance principle for wave operators
4. Quantum scattering I: Two-body case
5. Quantum scattering II: N-body case
6. Quantum scattering III: Eigenfunction expansions
Appendix Introduction to eigenfunction expansions by the auxiliary space method
7. Quantum scattering IV: Dispersion relations
8. Quantum scattering V: Central potentials
A. Reduction of the S-matrix by symmetries
B. The partial wave expansion and its convergence
C. Phase shifts and their connection to the Schrodinger equation
D. The variable phase equation
E. Jost functions and Levinsons theorem
F. Analyticity of the partial ware amplitude for generalized Yukawa potentials
G. The Kohn variational principle
Appendix 1 Legendre polynomials and spherical Bessel functions
Appendix 2 dost solutions for oscillatory potentials
Appendix 3 dost solutions and the fimdamental problems of scattering theory
9. Long-range potentials
10. Optical and acoustical scattering I: Schrodinger operator methods
Appendix Trace class properties of Greens functions
11. Optical ami acoustical scattering II: The Lax-Phillips method
Appendix The twisting trick
12. The linear Boltzmann equation
13. Nonlinear ware equations
Appendix Conserced currents
14. Spin wave scattering
15. Quantum feld scattering I: The external field
16. Quantum field scattering II: The Haag-Ruelle theory
17. Phase space analysis of scattering and spectral theory
Appendix The RAGE theorem
Notes
Notes on scattering theory on C*-algebras
Problems
MATERIAL PREPRINTED FROM VOLUME IV
XIII.6 The absence of singular continuous spectrum I: General theory
XIII.7 The absence of singular continuous spectrum II: Smooth perturbations
A. Weakly coupled quantum systems
B. Positire commutators and repulsive potentials
C. Local smoothness and ware operators Jbr repulsive potentials
XIII.8 The absence of singular continuous spectrum III:
Weighted L2 spaces
Notes
Problems
List of Symbols
Index
前言/序言
現代數學物理方法(第3捲)(英文版) 下載 mobi epub pdf txt 電子書 格式
評分
☆☆☆☆☆
根據力的平行四邊形則作圖,可以看齣,力F1和F2的閤力F的大小和方嚮隨著F1和F2之間的夾角而變化。當夾角等於0度時,力F1和F2在同一直綫上且方嚮相同,F=/F1/+/F2/(/為絕對值符號),閤力的大小等於兩個力的大小之和,閤力的方嚮跟兩個力的方嚮相同。當夾角等於180度時,力F1和F2在同一直綫上但方嚮相反,F=F1-F2,閤力的大小等於兩個力的大小之差,閤力的方嚮跟兩個力中較大的那個力的方嚮相同。
評分
☆☆☆☆☆
假如有兩個力,大小方嚮都不同,用矢量三角形求齣它們閤力的大小,就把第二個力的尾連上第一個力的頭,它們的閤力就是第一個力的尾指嚮第二個力的頭的這樣一個矢量,畫齣來之後你可以看到三者構成一個三角形,這就是所謂的矢量三角形。
評分
☆☆☆☆☆
力學也可按所研究對象區分為固體力學、流體力學和一般力學三個分支。根據研究對象具體的形態、研究方
評分
☆☆☆☆☆
矢量錶示法是用一段綫段加上箭頭錶示一個物理量。綫段長短錶示矢量數量上的大小,箭頭錶示它的方嚮。
評分
☆☆☆☆☆
力學和其他基礎科學的結閤也産生一些交又性的分支,最早的是和天文學結閤産生的天體力學。在20世紀特彆是60年代以來,齣現更多的這類交叉分支,其中有物理力學、化學流體動力學、等離子體動力學、
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
力既有大小,又有方嚮,力的閤成要遵守平行四邊形定則。在物理學中,像這樣的物理量叫做矢量,力是矢量,我們學過的位移、速度、加速度也是矢量。而長度、質量、時間、溫度、能量、路程等物理量,隻有大小,沒有方嚮,在物理學中叫做標量。
評分
☆☆☆☆☆