内容简介
本书面向更广泛的非数学专业学生,故着重于对随机过程的基本知识和基本方法的介绍,特别是注重实际应用,尽量回避测度论水平的严格证明。各章都配有一些与社会、经济、管理以及生物等专业相关的例子和习题,以帮助学生加深对基本理论的理解,提高应用随机过程解决实际问题的能力。
作者简介
张波,教授,博士生导师,香港科技大学数学系理学博士。中国人民大学统计学院副院长。主要从事应用概率统计,随机微分(差分)方程,随机分析在金融与保险中的应用等方向的教学和研究工作。
目录
第1章预备知识
1.1概率空间
1.2随机变量与分布函数
1.3数字特征、矩母函数与特征函数
1.4收敛性
1.5独立性与条件期望
第2章随机过程的基本概念和基本类型
2.1基本概念
2.2有限维分布与Kolmogorov定理
2.3随机过程的基本类型
习题
第3章Poisson过程
3.1Poisson 过程
3.2与Poisson过程相联系的若干分布
3.3Poisson过程的推广
习题
第4章更新过程
4.1更新过程的定义及若干分布
4.2更新方程及其应用
4.3更新定理
4.4更新过程的推广
习题
第5章Markov链
5.1基本概念
5.2状态的分类及性质
5.3极限定理及平稳分布
5.4Markov链的应用
5.5连续时间Markov链
习题
第6章鞅
6.1基本概念
6.2鞅的停时定理及其应用
6.3一致可积性
6.4鞅收敛定理
6.5连续鞅
习题
第7章Brown运动
7.1基本概念与性质
7.2Gauss过程
7.3Brown运动的鞅性质
7.4Brown运动的Markov性
7.5Brown运动的最大值变量及反正弦律
7.6Brown运动的几种变化
7.7高维Brown运动
习题
第8章随机积分
8.1关于随机游动的积分
8.2关于Brown运动的积分
8.3It�埢�分过程
8.4It�埞�式
8.5随机微分方程
习题
第9章随机过程在金融中的应用
9.1金融市场的术语与基本假定
9.2Black�睸choles模型
习题
第10章随机过程在保险精算中的应用
10.1基本概念
10.2经典破产理论介绍
习题
第11章Markov链Monte Carlo方法
11.1计算积分的Monte Carlo方法
11.2Markov链Monte Carlo方法简介
11.3Metropolis�睭astings算法
11.4Gibbs抽样
11.5贝叶斯MCMC估计方法
习题
习题参考答案
参考文献
精彩书摘
全书可分为五个部分。第一部分(第1,2,3,5章)是预备知识和随机过程最基本的内容,一般教材都包含这部分内容;第二部分(第4章)介绍更新过程,这一内容在许多教材中都没有单独讨论,考虑到它在人口理论和保险论中的应用,将其单独作为一章讲授;第三部分(第6,7,8章)分别介绍经典的鞅论、Brown运动与随机积分;第四部分(第9,10章)介绍随机过程在金融和保险精算中的应用;第五部分(第11章)则相对独立,介绍Markov链Monte Carlo方法及其在贝叶斯估计中的应用的简单应用。书末附上了全部习题的详细解答,供读者参考。
前言/序言
应用随机过程(第四版)(21世纪统计学系列教材) 下载 mobi epub pdf txt 电子书 格式