泛函分析讲义

泛函分析讲义 pdf epub mobi txt 电子书 下载 2025

黎永锦 著
图书标签:
  • 泛函分析
  • 数学分析
  • 高等数学
  • 理论基础
  • 数学教材
  • 大学教材
  • 函数空间
  • 算子理论
  • 巴拿赫空间
  • 希尔伯特空间
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 科学出版社
ISBN:9787030295613
版次:1
商品编码:11403767
包装:平装
开本:32开
出版时间:2011-01-01
用纸:胶版纸
页数:164
字数:198000
正文语种:中文

具体描述

内容简介

  《泛函分析讲义》是作者根据十几年来在中山大学数学系讲授泛函分析课程的讲义基础上写成的,共分7章,主要内容包括度量空间、赋范线性空间、有界线性算子、共轭空间、Hilbert空间、线性算子的谱理论、凸性与光滑性等。书中附有习题和部分解答。《泛函分析讲义》是泛函分析的一本入门教材,可作为高等院校数学专业高年级本科生、研究生教材或教师的教学参考书。

内页插图

目录

第1章 度量空间
1.1 度量空间
1.2 度量拓扑
1.3 连续算子
1.4 完备性与不动点定理
习题

第2章 赋范线性空间
2.1 赋范空间的基本概念
2.2 范数的等价性与有限维赋范空间
2.3 Schauder基与可分性
2.4 线性连续泛函与Hahn—Banach定理
2.5 严格凸空间
习题二

第3章 有界线性算子
3.1 有界线性算子
3.2 一致有界原理
3.3 开映射定理与逆算子定理
3.4 闭线性算子与闭图像定理
习题三

第4章 共轭空间
4.1 共轭空间
4.2 自反Banach空间
4.3 弱收敛
4.4 共轭算子
习题四

第5章 Hilbert空间
5.1 内积空间
5.2 投影定理
5.3 Hilbert空间的正交集
5.4 Hilbert空间的共轭空间
习题五

第6章 线性算子的谱理论
6.1 有界线性算子的谱理论
6.2 紧线算子的谱性质
6.3 Hilbert空间上线性算子的谱理论
习题六

第7章 凸性与光滑性
7.1 严格凸与光滑
7.2 一致凸与一致光滑
7.3 凸性与再赋范问题
习题七
部分习题解答
参考文献
索引

前言/序言


用户评价

评分

数学商业上计算的需要、了解数与数之间的体系、测量土地及预测天文观念。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关联著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。

评分

除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。

评分

评分

评分

4,Euclid空间、内积、标准正交基、Gram-Schmidt正交化过程、Euclid 空间的同构、正交矩阵、正交群、辛空间、辛群、辛算子、酉空间、Hermite型、酉矩阵、酉群、赋范线性空间、按模收敛、绝对收敛。

评分

数学,起源于人类早期的生产活动。为中国古代六艺之一(六艺中称为“数”),亦被古希腊学者视为哲学之起点。数学的希腊语意思就是“学问的基础μαθηματικ,源于ματθημα(máthema)(“科学,知识,学问”)。 

评分

评分

——“数学研究”。即使在其语源内,其形容词意义是与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数 。以前中国古代把数学叫算术,又称算学,最后才改为数学。

评分

9,张量的概念、张量的坐标、张量积、张量的卷积、对称与斜对称张量、张量空间、外代数。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有