第1章 度量空间
1.1 度量空间
1.2 度量拓扑
1.3 连续算子
1.4 完备性与不动点定理
习题
第2章 赋范线性空间
2.1 赋范空间的基本概念
2.2 范数的等价性与有限维赋范空间
2.3 Schauder基与可分性
2.4 线性连续泛函与Hahn—Banach定理
2.5 严格凸空间
习题二
第3章 有界线性算子
3.1 有界线性算子
3.2 一致有界原理
3.3 开映射定理与逆算子定理
3.4 闭线性算子与闭图像定理
习题三
第4章 共轭空间
4.1 共轭空间
4.2 自反Banach空间
4.3 弱收敛
4.4 共轭算子
习题四
第5章 Hilbert空间
5.1 内积空间
5.2 投影定理
5.3 Hilbert空间的正交集
5.4 Hilbert空间的共轭空间
习题五
第6章 线性算子的谱理论
6.1 有界线性算子的谱理论
6.2 紧线算子的谱性质
6.3 Hilbert空间上线性算子的谱理论
习题六
第7章 凸性与光滑性
7.1 严格凸与光滑
7.2 一致凸与一致光滑
7.3 凸性与再赋范问题
习题七
部分习题解答
参考文献
索引
领域
评分2,多项式矩阵、多项式矩阵的初等变换、多项式矩阵的相抵、Smith标准型、行列式因子、不变因子、初等因子组、特征方阵与Jordan标准型的关系、实方阵的实相似。
评分 评分代数学-3
评分好评。。zz
评分5,内积空间上的线性算子、化二次型为主轴形式、把两个二次型同时化为规范型、保距算子的规范形式、极分解、奇异值分解、Schur定理、Witt扩张定理、复结构、复化线性空间、实化线性空间、实化线性算子、复化算子、最小二乘法、球面多项式、加权正交。
评分6,二元运算、半群、幺半群、群、子群、循环群、群的同构、Cayley定理、群的同态与自同态、环、同余类、剩余类环、环的同态、整环、域、域的同构与自同构、域的特征、素域、复数域、本原根、复数的几何、交比。
评分 评分5,内积空间上的线性算子、化二次型为主轴形式、把两个二次型同时化为规范型、保距算子的规范形式、极分解、奇异值分解、Schur定理、Witt扩张定理、复结构、复化线性空间、实化线性空间、实化线性算子、复化算子、最小二乘法、球面多项式、加权正交。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有