第1章 度量空间
1.1 度量空间
1.2 度量拓扑
1.3 连续算子
1.4 完备性与不动点定理
习题
第2章 赋范线性空间
2.1 赋范空间的基本概念
2.2 范数的等价性与有限维赋范空间
2.3 Schauder基与可分性
2.4 线性连续泛函与Hahn—Banach定理
2.5 严格凸空间
习题二
第3章 有界线性算子
3.1 有界线性算子
3.2 一致有界原理
3.3 开映射定理与逆算子定理
3.4 闭线性算子与闭图像定理
习题三
第4章 共轭空间
4.1 共轭空间
4.2 自反Banach空间
4.3 弱收敛
4.4 共轭算子
习题四
第5章 Hilbert空间
5.1 内积空间
5.2 投影定理
5.3 Hilbert空间的正交集
5.4 Hilbert空间的共轭空间
习题五
第6章 线性算子的谱理论
6.1 有界线性算子的谱理论
6.2 紧线算子的谱性质
6.3 Hilbert空间上线性算子的谱理论
习题六
第7章 凸性与光滑性
7.1 严格凸与光滑
7.2 一致凸与一致光滑
7.3 凸性与再赋范问题
习题七
部分习题解答
参考文献
索引
9,张量的概念、张量的坐标、张量积、张量的卷积、对称与斜对称张量、张量空间、外代数。
评分11,线性映射、线性映射的矩阵表示、像与核、线性算子、线性算子代数、极小多项式、矩阵的相似、线性算子的行列式与迹。
评分数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
评分创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
评分4,作为有向体积的行列式、行列式的基本性质、子式、余子式、行列式的展开。
评分10,一般域上的线性空间、子空间、线性相关、线性无关、向量组的秩、基与维数、不同基之间的过渡矩阵、线性空间的同构、子空间的交与和、维数定理、直和、补空间、商空间、线性函数、对偶空间、线性无关的判别法。
评分4,Euclid空间、内积、标准正交基、Gram-Schmidt正交化过程、Euclid 空间的同构、正交矩阵、正交群、辛空间、辛群、辛算子、酉空间、Hermite型、酉矩阵、酉群、赋范线性空间、按模收敛、绝对收敛。
评分 评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有