12,R^n中的k维子流形、切空间的定义、条件极值、Lagrange乘子法。
评分 评分3,函数列的收敛集、含参变量的函数族、收敛与一致收敛、Cauchy准则、复数域的收敛与复数项级数、幂级数、Cauchy-Hadamard公式、 Abel定理、函数的幂级数表示、幂级数的解析性、Weierstrass优级数判别法、Abel-Dirichlet判别法。
评分4,二重极限可交换的条件、函数族的极限函数的连续性、幂级数的和函数的连续性、Dini定理、函数族极限函数的可积性、函数族的极限函数的可微性、幂级数的和函数的可微性、Cesaro和、Tauber定理。
评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分6,拓扑空间与度量空间的定义、开集、闭集、边界、拓扑基、Hausdorff空间、子拓扑、度量空间与拓扑空间的直积、第二可数空间。
评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有