内容简介
《泛函分析第二教程(第2版)》共分五章,分别介绍了向量值函数的积分和向量值测度,算子半群,拓扑线性空间,Banach代数,非线性映射等基本内容。除广义函数论因《实变函数论与泛函分析》(夏道行等编)第七章中已有扼要介绍外,泛函分析中重要也是具应用价值的几个部分都在《泛函分析第二教程(第2版)》中作了介绍。只要具备大学阶段所规定的泛函分析基础课知识就可阅读《泛函分析第二教程(第2版)》,《泛函分析第二教程(第2版)》可作为综合大学、师范院校数学类各专业高年级学生的选修课教材,也可作为理、工科有关专业研究生教材。
目录
第一章 向量值函数的积分与向量值测度
1.1 向量值函数的微积分
1.1.1 向量值函数的连续性
1.1.2 向量值函数的可导性
1.1.3 向量值函数的Riemann积分
1.2 向量值可测函数
1.2.1 可测函数的定义
1.2.2 强可测与弱可测的关系
1.2.3 算子值可测函数
1.3 B0chner积分和Pettis积分
1.3.1 Pettis积分
1.3.2 Bochner积分
1.3.3 Bochner可积函数的性质
1.3.4 算子值函数的Bochner积分
1.4 向量值测度
1.4.1 向量值测度的基本概念
1.4.2 向量值测度的可列可加性
1.4.3 向量值测度的绝对连续性
1.4.4 Radon-Nikodym性质
1.4.5 具有Riesz表示的算子
1.4.6 关于Radon-Nikodym性质的附注
1.4.7 vitali-Hahn-Saks定理
1.4.8 数值函数关于向量值测度的积分
第二章 算子半群
2.1 算子半群的概念
2.1.1 算子半群概念的由来
2.1.2 算子半群的一些例子
2.1.3 算子半群的可测性和连续性
2.2 岛类算子半群
2.2.1 函类算子半群的基本概念
2.2.2 无穷小母元的预解式
2.2.3 Cb类算子半群的表示
2.2.4 无穷小母元的特征
2.2.5 函类压缩半群
2.3 算子半群的应用
2.3.1 仉Ⅳ10r公式的推广
2.3.2 抽象Cauchy问题
2.4 遍历理论
2.4.1 概述
2.4.2 遍历定理
2.4.3 推广的形式
2.4.4 算子半群的遍历定理.,
2.5 单参数算子群,stone定理
2.5.1 半群成为群的条件
2.5.2 单参数酉算子群的stone定理
2.5.3 Stone定理的应用:平稳随机过程
2.5.4 Stone定理的应用:平均遍历定理
第三章 拓扑线性空间
3.1 拓扑空间
3.1.1 邻域,序,网
3.1.2 拓扑的强弱、生成和分离公理
3.1.3 连续映射和ypbIcoH引理
3.1.4 紧性
3.1.5 乘积拓扑,THx0HoB定理
3.1.6 诱导拓扑和可度量化空间
3.2 拓扑线性空间
3.2.1 基本概念和性质
3.2.2 有限维线性空间的特征
3.2.3 线性连续算子和线性连续泛函
3.2.4 有界集和完全有界集
3.2.5 局部基的特征,商拓扑
3.2.6 完备集,完备性
3.2.7 线性度量空间
3.3 凸集与局部凸空间
3.3.1 凸集及凸集的分离定理
3.3.2 凸集的Minkowski泛函,线性泛函的延拓
3.3.3 局部凸空间
3.3.4 弱拓扑,商拓扑
3.3.5 弱拓扑
3.3.6 端点KpefiH-MMJIbMaH定理,不动点定理
3.4 几种局部凸空间
3.4.1 囿空间
3.4.2 桶式空间
3.4.3 Mackey空间
3.4.4 赋范线性空间
3.4.5 BfH-日)的各种拓扑
3.4.6 归纳极限与投影极限
第四章 Banach代数
4.1 基本概念和性质,元的正则集及谱
4.1.1 代数,单位元,正则元,正则集及谱
4.1.2 Banach代数中元素的谱
4.1.3 元素在子代数中的谱
4.1.4 几个例子
4.2 reⅡLqDaH且表示,交换Banacr代数
4.2.1 线性可乘泛函
4.2.2 reⅡbdDaH皿表示
4.2.3 理想,极大理想
4.2.4 几个Banach代数上线性可乘泛函的形式
4.2.5 半单的Banach代数
4.3 对称Ba:Flac代数
4.3.1 对合
4.3.2 正泛函与表示
4.3.3 不可分解的正泛函与既约表示
4.4 c代数
4.4.1 Gr代数的基本性质
4.4.2 正常元的函数演算
4.4.3 谱分解定理
4.4.4 二次换位定理
4.4.5 正元
4.4.6 Kaplansky稠密性定理
4.4.7 正泛函,态与纯态
4.4.8 线性有界泛函的分解
4.4.9 纯态与可乘性
4.5 群代数
4.5.1 局部紧Haus(10rfr空间上的积分
4.5.2 局部紧群上的Haar积分
4.5.3 群代数
第五章 非线性映射
5.1 映射的微分
5.1.1 强微分
5.1.2 弱微分
5.1.3 高阶微分
5.1.4 raylol公式
5.1.5 幂级数
5.2 隐函数定理
5.2.1 C映射
5.2.2 隐函数存在定理
5.2.3 隐函数的可微性
5.3 泛函极值
5.3.1 泛函极值的必要条件
5.3.2 泛函极值存在性的下半弱连续条件
5.3.3 最速下降法
5.3.4 泛函极值存在性的Palais-Smale条件
5.4 Brouwer度
5.4.1 C类映射的拓扑度
5.4.2 几个引理
5.4.3 c类映射的拓扑度(续)
5.4.4 连续映射的拓扑度及其性质
5.5 Leray-schauder度
5.5.1 全连续映射
5.5.2 Leray-Schauder度的定义
5.5.3 Lerav-Schauder度的性质
5.6 不动点定理
5.6.1 Brouwer不动点定理
5.6.2 Schauder不动点定理
5.6.3 集压缩映射的不动点
5.6.4 多值映射的不动点
参考文献
索引
泛函分析第二教程(第2版) 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
好书慢慢看!!!!!!!!1
评分
☆☆☆☆☆
意料之外,写的相对好懂,国内这种封面系列的数学书都不错。
评分
☆☆☆☆☆
书的难度很大啊,但是还好,没有什么印刷质量问题,整本书摸起来的质感也不错
评分
☆☆☆☆☆
好书。。。。。。。。。。。。。
评分
☆☆☆☆☆
这几本书是好东西,我就不具体说了。数学专业的书嘛比较详细让你知道为什么。同济那本书让你知道怎么用。都是好书但目的不同。
评分
☆☆☆☆☆
上学的时候没学好 所以现在需要回来恶补 不然咋办
评分
☆☆☆☆☆
很好,200减60买的,挺划算
评分
☆☆☆☆☆
好好好好好好好好好好好好好好好
评分
☆☆☆☆☆
书送的快!变分法对处理一些泛函问题很有效。