泛函分析第二教程(第2版)

泛函分析第二教程(第2版) pdf epub mobi txt 电子书 下载 2025

夏道行,严绍宗,舒五昌,童裕孙 著
承接 住宅 自建房 室内改造 装修设计 免费咨询 QQ:624617358 一级注册建筑师 亲自为您回答、经验丰富,价格亲民。无论项目大小,都全力服务。期待合作,欢迎咨询!QQ:624617358
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 高等教育出版社
ISBN:9787040247503
版次:2
商品编码:11876230
包装:平装
丛书名: 现代数学基础
开本:16开
出版时间:2009-01-01
用纸:胶版纸
正文语种:中文

具体描述

内容简介

  《泛函分析第二教程(第2版)》共分五章,分别介绍了向量值函数的积分和向量值测度,算子半群,拓扑线性空间,Banach代数,非线性映射等基本内容。除广义函数论因《实变函数论与泛函分析》(夏道行等编)第七章中已有扼要介绍外,泛函分析中重要也是具应用价值的几个部分都在《泛函分析第二教程(第2版)》中作了介绍。只要具备大学阶段所规定的泛函分析基础课知识就可阅读《泛函分析第二教程(第2版)》,《泛函分析第二教程(第2版)》可作为综合大学、师范院校数学类各专业高年级学生的选修课教材,也可作为理、工科有关专业研究生教材。

目录

第一章 向量值函数的积分与向量值测度
1.1 向量值函数的微积分
1.1.1 向量值函数的连续性
1.1.2 向量值函数的可导性
1.1.3 向量值函数的Riemann积分
1.2 向量值可测函数
1.2.1 可测函数的定义
1.2.2 强可测与弱可测的关系
1.2.3 算子值可测函数
1.3 B0chner积分和Pettis积分
1.3.1 Pettis积分
1.3.2 Bochner积分
1.3.3 Bochner可积函数的性质
1.3.4 算子值函数的Bochner积分
1.4 向量值测度
1.4.1 向量值测度的基本概念
1.4.2 向量值测度的可列可加性
1.4.3 向量值测度的绝对连续性
1.4.4 Radon-Nikodym性质
1.4.5 具有Riesz表示的算子
1.4.6 关于Radon-Nikodym性质的附注
1.4.7 vitali-Hahn-Saks定理
1.4.8 数值函数关于向量值测度的积分

第二章 算子半群
2.1 算子半群的概念
2.1.1 算子半群概念的由来
2.1.2 算子半群的一些例子
2.1.3 算子半群的可测性和连续性
2.2 岛类算子半群
2.2.1 函类算子半群的基本概念
2.2.2 无穷小母元的预解式
2.2.3 Cb类算子半群的表示
2.2.4 无穷小母元的特征
2.2.5 函类压缩半群
2.3 算子半群的应用
2.3.1 仉Ⅳ10r公式的推广
2.3.2 抽象Cauchy问题
2.4 遍历理论
2.4.1 概述
2.4.2 遍历定理
2.4.3 推广的形式
2.4.4 算子半群的遍历定理.,
2.5 单参数算子群,stone定理
2.5.1 半群成为群的条件
2.5.2 单参数酉算子群的stone定理
2.5.3 Stone定理的应用:平稳随机过程
2.5.4 Stone定理的应用:平均遍历定理

第三章 拓扑线性空间
3.1 拓扑空间
3.1.1 邻域,序,网
3.1.2 拓扑的强弱、生成和分离公理
3.1.3 连续映射和ypbIcoH引理
3.1.4 紧性
3.1.5 乘积拓扑,THx0HoB定理
3.1.6 诱导拓扑和可度量化空间
3.2 拓扑线性空间
3.2.1 基本概念和性质
3.2.2 有限维线性空间的特征
3.2.3 线性连续算子和线性连续泛函
3.2.4 有界集和完全有界集
3.2.5 局部基的特征,商拓扑
3.2.6 完备集,完备性
3.2.7 线性度量空间
3.3 凸集与局部凸空间
3.3.1 凸集及凸集的分离定理
3.3.2 凸集的Minkowski泛函,线性泛函的延拓
3.3.3 局部凸空间
3.3.4 弱拓扑,商拓扑
3.3.5 弱拓扑
3.3.6 端点KpefiH-MMJIbMaH定理,不动点定理
3.4 几种局部凸空间
3.4.1 囿空间
3.4.2 桶式空间
3.4.3 Mackey空间
3.4.4 赋范线性空间
3.4.5 BfH-日)的各种拓扑
3.4.6 归纳极限与投影极限

第四章 Banach代数
4.1 基本概念和性质,元的正则集及谱
4.1.1 代数,单位元,正则元,正则集及谱
4.1.2 Banach代数中元素的谱
4.1.3 元素在子代数中的谱
4.1.4 几个例子
4.2 reⅡLqDaH且表示,交换Banacr代数
4.2.1 线性可乘泛函
4.2.2 reⅡbdDaH皿表示
4.2.3 理想,极大理想
4.2.4 几个Banach代数上线性可乘泛函的形式
4.2.5 半单的Banach代数
4.3 对称Ba:Flac代数
4.3.1 对合
4.3.2 正泛函与表示
4.3.3 不可分解的正泛函与既约表示
4.4 c代数
4.4.1 Gr代数的基本性质
4.4.2 正常元的函数演算
4.4.3 谱分解定理
4.4.4 二次换位定理
4.4.5 正元
4.4.6 Kaplansky稠密性定理
4.4.7 正泛函,态与纯态
4.4.8 线性有界泛函的分解
4.4.9 纯态与可乘性
4.5 群代数
4.5.1 局部紧Haus(10rfr空间上的积分
4.5.2 局部紧群上的Haar积分
4.5.3 群代数

第五章 非线性映射
5.1 映射的微分
5.1.1 强微分
5.1.2 弱微分
5.1.3 高阶微分
5.1.4 raylol公式
5.1.5 幂级数
5.2 隐函数定理
5.2.1 C映射
5.2.2 隐函数存在定理
5.2.3 隐函数的可微性
5.3 泛函极值
5.3.1 泛函极值的必要条件
5.3.2 泛函极值存在性的下半弱连续条件
5.3.3 最速下降法
5.3.4 泛函极值存在性的Palais-Smale条件
5.4 Brouwer度
5.4.1 C类映射的拓扑度
5.4.2 几个引理
5.4.3 c类映射的拓扑度(续)
5.4.4 连续映射的拓扑度及其性质
5.5 Leray-schauder度
5.5.1 全连续映射
5.5.2 Leray-Schauder度的定义
5.5.3 Lerav-Schauder度的性质
5.6 不动点定理
5.6.1 Brouwer不动点定理
5.6.2 Schauder不动点定理
5.6.3 集压缩映射的不动点
5.6.4 多值映射的不动点
参考文献
索引

用户评价

评分

纸质很好,书也很完整,没有破损,是正版

评分

京东买书,就是方便快捷,而且价格实惠公道。

评分

作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成

评分

作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成

评分

在《数论1:Fermat的梦想和类域论》的基础上,进一步迈向现代数论的两大主题:解析方面的自守形式和代数方面的岩泽理论,以及二者之间的联系。在自守形式方面介绍了模形式、Eisenstein级数、自守形式与表示论之间的关系以及Langlands猜想等。在岩泽理论方面介绍了分圆zp扩张、p进函数、岩泽主猜想及与自守形式的关系等。最后不予证明地介绍了Wiles对:Fermat,大定理的证明。这是读完《数论2:岩泽理论和自守形式》后可进一步学习的主要方向之一。

评分

无限维空间的测度积分

评分

此书将数论中的精华(elements)娓娓道出,对概念的历史来源和解释都十分清晰。每一小节都附有3,4道容易解决的习题,帮助理解复习。我完全没学过数论,一个星期也读了60页,欲罢不能。总而言之,这是一本很好的入门书,推荐。该书的作者是证明了三素数定理的Vinogradov,他基本解决了奇数Goldbach猜想。书的特点是短小,习题难。看这本书必须好好做题。很多习题源自一些研究论文,并且被IMO或CMO命题人员经常改编。这本书值得精读。作者如果再加一点他擅长的三角和估计这方面的内容介绍就更好了。送货速度快,包装也很好。其实我不是学数学的。也不打算以数学为职业,当然更没有民科们的野心,只是有一些对于数学的爱好而已。 数论,抽象代数,概率论,数理统计,应该来说是我在数学里面最为喜欢的东西。 我觉得这本书还是没有让我们落入到具体的细节当中去。我觉得这是最重要,也是最为关键的地方。有一个朦朦胧胧的想法,那就是如果在踏入一门学科之初就深入到细节当中去的话,很难对于这门学科未来的走向有一个很好的把握,也很难谈得上对于这门学科的透彻的理解。我认为这本书是最好的初等数论教材 没有之一,现在又出第三版了,我马上入手了。证明详细,习题丰富,对后续学习抽象代数,高等代数也有很大的帮助。在学习了一定的分析课程之后,然后上手解析数论就不会很吃力。事实上潘氏兄弟后续的还有代数数论,解析数论基础,素数定理的初等证明,阶的估计,模形式讲义等数论的一条龙基础教材,只需要从本书开始逐一学完这一系列教材,就能打下很好的数论基础了。

评分

京东买书快捷方便,质量有保证。

评分

这本书很不错,我一直想买的,这次趁双十一大促期间终于如愿以偿。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有