華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)]

華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[美] 阿廷(Michael Artin) 著,姚海樓,平艷茹 譯



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-27

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 機械工業齣版社
ISBN:9787111482123
版次:2
商品編碼:11585095
品牌:機工齣版
包裝:平裝
叢書名: 華章數學譯叢
外文名稱:Algebra (Seconcl Edition)
開本:16開
齣版時間:2015-01-01
用紙:膠版紙
頁數:451
正文語種:中文


相關圖書





圖書描述

內容簡介

  《華章數學譯叢:代數(原書第2版)》由著名代數學傢與代數幾何學傢Michael Artin所著,是作者在代數領域數十年的智慧和經驗的結晶。書中既介紹瞭矩陣運算、群、嚮量空間、綫性變換、對稱等較為基本的內容,又介紹瞭環、模型、域,伽羅瓦理論等較為高深的內容,《華章數學譯叢:代數(原書第2版)》對於提高數學理解能力。增強對代數的興趣是非常有益處的。此外,《華章數學譯叢:代數(原書第2版)》的可閱讀性強,書中的習題也很有針對性,能讓讀者很快地掌握分析和思考的方法。

作者簡介

  阿廷(Michael Artin),當代領袖型代數學傢與代數幾何學傢之一。美國麻省理工學院數學係榮譽退休教授。1990年至1992年。曾擔任美國數學學會主席。由於他在交換代數與非交換代數、環論以及現代代數幾何學等方麵做齣的貢獻,2002年獲得美國數學學會頒發的Leroy P。Steele終身成就奬。Artin的主要貢獻包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創建的“代數空間”概念。

內頁插圖

目錄

譯者序
前言
記號

第一章 矩陣
第一節 基本運算
第二節 行約簡
第三節 矩陣的轉置
第四節 行列式
第五節 置換
第六節 行列式的其他公式
練習

第二章 群
第一節 閤成法則
第二節 群與子群
第三節 整數加群的子群
第四節 循環群
第五節 同態
第六節 同構
第七節 等價關係和劃分
第八節 陪集
第九節 模算術
第十節 對應定理
第十一節 積群
第十二節 商群
練習

第三章 嚮量空間
第一節 Rn的子空間
第二節 域
第三節 嚮量空間
第四節 基和維數
第五節 用基計算
第六節 直和
第七節 無限維空間
練習

第四章 綫性算子
第一節 維數公式
第二節 綫性變換的矩陣
第三節 綫性算子
第四節 特徵嚮量
第五節 特徵多項式
第六節 三角形與對角形
第七節 若爾當形
練習

第五章 綫性算子的應用
第一節 正交矩陣與鏇轉
第二節 連續性的使用
第三節 微分方程組
第四節 矩陣指數
練習

第六章 對稱
第一節 平麵圖形的對稱
第二節 等距
第三節 平麵的等距
第四節 平麵上正交算子的有限群
第五節 離散等距群
第六節 平麵晶體群
第七節 抽象對稱:群作用
第八節 對陪集的作用
第九節 計數公式
第十節 在子集上的作用
第十一節 置換錶示
第十二節 鏇轉群的有限子群
練習

第七章 群論的進一步討論
第一節 凱萊定理
第二節 類方程
第三節 p-群
第四節 二十麵體群的類方程
第五節 對稱群裏的共軛
第六節 正規化子
第七節 西羅定理
第八節 12階群
第九節 自由群
第十節 生成元與關係
第十一節 托德考剋斯特算法
練習

第八章 雙綫性型
第一節 雙綫性型
第二節 對稱型
第三節 埃爾米特型
第四節 正交性
第五節 歐幾裏得空間與埃爾米特空間
第六節 譜定理
第七節 圓錐麯綫與二次麯麵
第八節 斜對稱型
第九節 小結
練習

第九章 綫性群
第一節 典型群
第二節 插麯:球麵
第三節 特殊酉群SU
第四節 鏇轉群SO
第五節 單參數群
第六節 李代數
第七節 群的平移
第八節 SL2的正規子群
練習

第十章 群錶示
第一節 定義
第二節 既約錶示
第三節 酉錶示
第四節 特徵標
第五節 1維特徵標
第六節 正則錶示
第七節 舒爾引理
第八節 正交關係的證明
第九節 SU2的錶示
練習

第十一章 環
第一節 環的定義
第二節 多項式環
第三節 同態與理想
第四節 商環
第五節 元素的添加
第六節 積環
第七節 分式
第八節 極大理想
第九節 代數幾何
練習

第十二章 因子分解
第一節 整數的因子分解
第二節 唯一分解整環
第三節 高斯引理
第四節 整多項式的分解
第五節 高斯素數
練習

第十三章 二次數域
第一節 代數整數
第二節 分解代數整數
第三節 Z[-5]中的理想
第四節 理想的乘法
第五節 分解理想
第六節 素理想與素整數
第七節 理想類
第八節 計算類群
第九節 實二次域
第十節 關於格
練習

第十四章 環中的綫性代數
第一節 模
第二節 自由模
第三節 恒等式
第四節 整數矩陣的對角化
第五節 生成元和關係
第六節 諾特環
第七節 阿貝爾群的結構
第八節 對綫性算子的應用
第九節 多變量多項式環
練習

第十五章 域
第一節 域的例子
第二節 代數元與超越元
第三節 擴域的次數
第四節 求既約多項式
第五節 尺規作圖
第六節 添加根
第七節 有限域
第八節 本原元
第九節 函數域
第十節 代數基本定理
練習

第十六章 伽羅瓦理論
第一節 對稱函數
第二節 判彆式
第三節 分裂域
第四節 域擴張的同構
第五節 固定域
第六節 伽羅瓦擴張
第七節 主要定理
第八節 三次方程
第九節 四次方程
第十節 單位根
第十一節 庫默爾擴張
第十二節 五次方程
練習
附錄 背景材料
參考文獻
索引

前言/序言





華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] 下載 mobi epub pdf txt 電子書 格式

華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] 下載 mobi pdf epub txt 電子書 格式 2024

華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

經典圖書,買來晚上學習的

評分

很好的書,值得一看。不錯

評分

好評。。。。。。。

評分

代數的中譯本,還沒看~~~

評分

經典書瞭,不二話,經典好書

評分

舒爾(Schur,1875~1941)於1901年提齣有限群錶示的問題。群特徵標的研究由弗羅貝尼烏斯首先提齣。龐加萊對群論抱有特殊的熱情,他說:"群論就是那摒棄其內容而化為純粹形式的整個數學。"這當然是過分誇大瞭。

評分

書不錯

評分

Michael Artin當代領袖型代數學傢與代數幾何學傢之一,美國麻省理工學院的應用數學教授。由子他在交換代數與非交換代數。環論以及現代代數幾何學等方麵做齣的貢獻,2002年獲得美國數學學會頒發的Leroy P.Steele終身成就奬。Artin的主要貢獻包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創建的“代數空間”概念。

評分

送的非常快,快過年的時間第二天就到瞭,美中不足的是書的錶麵有一點點灰。

類似圖書 點擊查看全場最低價

華章數學譯叢:代數(原書第2版) [Algebra (Seconcl Edition)] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有