11,Poincare定理、de Rham上同调、de Rham定理。
评分数学分析的创立始于17世纪以牛顿(Newton,I.)和莱布尼茨(Leibnize,G.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。数学分析亦简称分析。
评分数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式—牛顿-莱布尼茨公式—反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于科学技术领域的大门,其影响所及,难以估量。因此,微积分的出现与发展被认为是人类文明史上划时代的事件之一。与积分相比,无穷级数也是微小量的叠加与积累,只不过取离散的形式(积分是连续的形式)。因此,在数学分析中,无穷级数与微积分从来都是密不可分和相辅相成的。在历史上,无穷级数的使用由来已久,但只在成为数学分析的一部分后,才得到真正的发展和广泛应用。
评分感觉不错不知道对学习的的辅导作用如何
评分9,梯度、散度、旋度、Hamilton算子、Laplace算子、正交曲线坐标下的梯度和散度及旋度、向量分析的基本公式。
评分8,Lebesgue可测函数、可测性与可积性之间的关系、Lebesgue积分号下取极限、交换积分顺序、Lebesgue测度、Lebesgue可测集、平方可积函数集、Riesz-Fischer定理。
评分 评分7,含参变量积分的定义、含参变量积分的连续性与可微性、含参变量积分的积分、含参变量广义积分的一致收敛性、含参变量广义积分的一致收敛的判别法、反常积分号下取极限、含参变量广义积分的连续性与可微性、含参变量广义积分的积分。
评分好
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有