12,不变子空间、特征值与特征向量、特征多项式、特征子空间、几何重数与代数重数、可对角化算子的判别法、不变子空间的存在性、共轭线性算子、商算子。代数学-2
评分3,多重线性映射、双线性型、矩阵的相合变换、双线性型的秩、左根基、对称双线性型与斜对称双线性型、二次型、二次型的规范型、化二次型为规范型的方法、实二次型、惯性定理、正定二次型与正定矩阵、Jacobi方法、Sylvester定理、斜对称二次型的规范型、Pfaff型。
评分数分可不是以闲着无聊的心态能学好的,学过高数就用Apostol,不过里面好像没怎么讲不定积分,因为这是国外的高等微积分教材,如果你想学算不定积分的话,应该读国内的,比如常庚哲史济怀的,徐森林的。
评分3,多重线性映射、双线性型、矩阵的相合变换、双线性型的秩、左根基、对称双线性型与斜对称双线性型、二次型、二次型的规范型、化二次型为规范型的方法、实二次型、惯性定理、正定二次型与正定矩阵、Jacobi方法、Sylvester定理、斜对称二次型的规范型、Pfaff型。
评分2,多项式矩阵、多项式矩阵的初等变换、多项式矩阵的相抵、Smith标准型、行列式因子、不变因子、初等因子组、特征方阵与Jordan标准型的关系、实方阵的实相似。
评分2,多项式矩阵、多项式矩阵的初等变换、多项式矩阵的相抵、Smith标准型、行列式因子、不变因子、初等因子组、特征方阵与Jordan标准型的关系、实方阵的实相似。
评分8,整环的分式域、有理函数域、最简分式、Bezout定理、多项式函数环、Laglrange与Newton插值公式、多项式环的微分法、Vieta公式、对称与斜对称函数、Wilson定理。
评分这套数学分析教程,是南京大学80年代编写的一套数学分析教材,一直作为南京大学数学系的教学用书。这套书与其他的同类教材编写略有不同,添加了一些实分析中的内容,将实变函数中的囿变函数,RS积分等内容添加进去,这是很不错的尝试。此次再版,弥补了不曾拥有拥有一套的缺憾。
评分1,范畴、函子、Hamilton-Cayley定理、Jordan标准型、根子空间、循环子空间、循环矩阵、矩阵的有理标准型。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有