微分几何

微分几何 pdf epub mobi txt 电子书 下载 2025

徐森林,纪永强,金亚东 等 著
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 中国科学技术大学出版社
ISBN:9787312030000
版次:1
商品编码:11187671
包装:平装
开本:16开
出版时间:2013-02-01
用纸:胶版纸
页数:325
字数:406000
正文语种:中文

具体描述

内容简介

  《微分几何》共3章。第1章讨论了曲线的曲率、挠率、Frenet公式、Bouqtlet公式等局部性质,证明了曲线论基本定理。还讨论了曲线的整体性质:4顶点定理、Minkowski定理、Fenchel定理,以及Faxy—Milnor关于纽结的全曲率不等式。第2章引进了第1基本形式、第2基本形式、Gauss(总)曲率、平均曲率、Weingarten映射、主曲率、曲率线、测地线等重要概念,给出了曲面的基本公式和基本方程、曲面论的基本定理,以及著名的Gauss绝妙定理等曲面的局部性质。第3章详细论述了曲面的整体性质,得到了全脐超曲面定理、球面刚性定理、极小曲面的gernstein定理、著名的Gauss—Bonnet公式及Poincare指标定理。
  为了帮助读者熟练地掌握微分几何的内容和方法,书中配备了大量有趣的习题,并在《微分几何学习指导》中给出了详细的解答。
  《微分几何》可用作综合性大学、理工科大学、师范大学数学系高年级大学生的教科书,也可作为大学数学教师和研究人员的参考书。

内页插图

目录

前言
第1章 曲线论
1.1 Cr正则曲线、切向量、弧长参数
1.2 曲率、挠率
1.3 Frenet标架、Frenet公式
1.4 Botlquet公式、平面曲线相对曲率
1.5 曲线论的基本定理
1.6 曲率圆、渐缩线、渐伸线
1.7 曲线的整体性质(4顶点定理、Minkowski定理、Fenchel定理)

第2章 Rn中k维Cr曲面的局部性质
2.1 曲面的参数表示、切向量、法向量、切空间、法空间
2.2 旋转面(悬链面、正圆柱面、正圆锥面)、直纹面、可展曲面(柱面、锥面、切线面)
2.3 曲面的第1基本形式与第2基本形式
2.4 曲面的基本公式、Weingarten映射、共轭曲线网、渐近曲线网
2.5 法曲率向量、测地曲率向量、Euler公式、主曲率、曲率线
2.6 Gauss曲率(总曲率)KG、平均曲率H
2.7 常Gauss曲率的曲面、极小曲面(H=0)
2.8 测地曲率、测地线、测地曲率的Liouville公式
2.9 曲面的基本方程、曲面论的基本定理、GaUSS绝妙定理
2.10 Riemann流形、Levi-Civita联络、向量场的平行移动、测地线
2.11 正交活动标架

第3章 曲面的整体性质
3.1 紧致全脐超曲面、球面的刚性定理
3.2 极小曲面的Bernstein定理
3.3 GaUSS-Bonnet公式
3.4 2维紧致定向流形M的Poincare色切向量场指标定理

参考文献

前言/序言

  微分几何是一门历史悠久的学科。近一个世纪以来,许多著名数学家如陈省身、丘成桐等都在这一研究方向上作出了极其重要的贡献。这一学科的生命力至今还很旺盛,并渗透到各个科学研究领域。
  古典微分几何以数学分析为主要工具,研究空间中光滑曲线与光滑曲面的各种性质,本书第1章讨论了曲线的曲率、挠率、Frenet公式、Bouquet公式等局部性质;证明了曲线论基本定理,也讨论了曲线的整体性质:4顶点定理、Minkowski定理与Fenchel定理以及Fary-Milnor关于纽结的全曲率不等式,第2章引进了第1基本形式、第2基本形式、Gauss(总)曲率、平均曲率、Weingarten映射、主曲率、曲率线、测地线等重要概念,给出了曲面的基本公式和基本方程、曲面论的基本定理,以及著名的Gauss绝妙定理等曲面的局部性质,还运用正交活动标架与外微分运算研究了第1、第2、第3基本形式,Weingarten映射以及第1、第2结构方程,第3章详细论述了曲面的整体性质,得到了全脐超曲面定理、球面的刚性定理、极小曲面的Bernstein定理、著名的Gauss-Bonnet公式及Poincare指标定理。

用户评价

评分

1,数项级数的收敛与发散、绝对收敛、非负数项级数收敛的充要条件、比较判别法、Weierstrass比较判别法、 Cauchy判别法、D‘Aleert判别法、Gauss判别法、Rabbe判别法、Kummer判别法、Bertrand判别法、Cauchy- Maclaurin积分判别法。

评分

需要很多基础啊啊啊

评分

评分

有人认为管理学应该归入自然科学,而另外一些人则认为应该归入社会科学。探其根本,管理学应归入社会科学。

评分

评分

4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。

评分

管理科学主要用运筹学来解决管理中碰到的问题。过去二十年管理科学发展很快,它已经不单单是用运筹学来分析一些具体问题,而是用自然科学与社会科学两大领域的综合性交叉科学来分析如运作管理,人力资源管理,风险管理与不确定性决策,复杂系统的演化、涌现、自适应、自组织、自相似的机理等,已经不是一个运筹学所能涵盖的。

评分

京东自营的书怎么像二手的?

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有