数学分析简明教程(第2版)(上册)

数学分析简明教程(第2版)(上册) 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
邓东皋,尹小玲 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-27

类似图书 点击查看全场最低价

图书介绍

出版社: 高等教育出版社
ISBN:9787040186628
版次:1
商品编码:10301057
包装:平装
丛书名: 普通高等教育“十一五”国家级规划教材
开本:16开
出版时间:2006-03-01
用纸:胶版纸


相关图书





图书描述

内容简介

《数学分析简明教程(上)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果。是面向21世纪课程教材。教程用“连续量的演算体系及其数学理论”的全新观点统率全书,在保留传统数学分析基本内容的前提下,比较好地处理极限与微积分演算及应用的关系,建立了一个既循序渐进、生动直观,又保持了严密性的系统,与传统的教程十分不同。本教程对概念、方法的来源与实质,有许多独到的、精辟的见解。教程分上、下两册,《数学分析简明教程(上)》为上册,主要内容包括实数连续统、函数、极限与函数连续性、微商与微分、微分中值定理及其应用、不定积分、定积分、微积分进一步应用、再论实数系等。《数学分析简明教程(上)》是作者集几十年教学与教改经验之力作,在教学改革实践中取得较好的效果。
《数学分析简明教程(上)》可作为高等学校理科及师范学校数学学科各专业的教科书,也可供计算机学科、力学、物理学科各专业选用及社会读者阅读。

目录

第一章 绪论
§1 绪论
§2 实数连续统

第二章 函数
§1 函数概念
§2 复合函数与反函数
§3 初等函数

第三章 极限与函数的连续性
§1 极限问题的提出
§2 数列的极限
§3 函数的极限
§4 函数的连续性
§5 无穷小量与无穷大量的比较

第四章 微商与微分
§1 微商概念及其计算
§2 微分概念及其计算
§3 隐函数与参数方程微分法
§4 高阶微商与高阶微分

第五章 微分中值定理及其应用
§1 微分中值定理
§2 洛必达法则
§3 函数的升降、凸性和函数作图
§4 函数的最大值最小值问题

第六章 不定积分
§1 不定积分的概念
§2 换元积分法与分部积分法

第七章 定积分
§1 定积分的概念
§2 定积分的基本性质
§3 微积分基本定理
§4 定积分的计算
§5 定积分在物理中的应用初步
§6 定积分的近似计算

第八章 微积分的进一步应用
§1 泰勒公式
§2 微积分在几何与物理中的应用
§3 微分方程初步
§4 开普勒三定律与万有引力定律

第九章 再论实数系
§1 实数连续性的等价描述
§2 实数闭区间的紧致性
§3 实数的完备性
§4 再论闭区间上连续函数的性质
§5 可积性

前言/序言

数学分析的主要内容是微积分,这是人类在科学中最伟大的创造之一。微积分研究的对象是连续量。本教程提供给读者的是一个连续量的演算体系及其数学理论。过去读者在中小学学的算术与代数的演算大都只涉及离散量,本教程将提供一套崭新的演算——连续量的演算。一个连续量对另一个连续量的连续依赖,其基本问题之一是“瞬时”变化率,或一个连续量对另一个连续量的变化“速率”,这就引导到微商的概念。变化率要“瞬时”,这是连续量的特征之一。变化率为什么要“瞬时”,其根本原因是,这样就能“机械化”地进行演算了。另一个基本问题是连续变化的积累,或连续作用的总和。这就引导到积分的概念。牛顿与莱布尼茨在创立微积分时的重大贡献之一是发现求这种连续量作用的积累或总和,是求变化率运算的逆运算,从而建立了一套连续量的“机械化”的演算体系。这一切最重要的体现是立微分方程与解微分方程。实数本质上是(一维)连续量的数学模型。本教程上册讲的一元函数微积分实际上是初等函数微积分。为了把它推广到非初等函数,人们才需要无穷级数与含参变量积分这样的工具,同时为了解决多个连续量之间的依赖关系问题,才需要发展到多元微积分。后面这两部分(无穷级数与多元微积分)便构成了本教程下册的主要内容。极限是对上述所有概念形式化统一处理的工具。用极限可以把上述概念精确化和统一处理,使理论简明统一。因此,极限的概念与运算将贯穿全书。但应提醒读者注意,一方面不要因为极限贯穿全书便用它掩盖了数学分析研究连续量演算体系的本质;另一方面,对极限的掌握也是通过对微积分各项内容的研究而逐步加深的。这是一个循序渐进的过程,读者不能希望“一蹴而就”。
数学分析简明教程(第2版)(上册) 下载 mobi epub pdf txt 电子书 格式

数学分析简明教程(第2版)(上册) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

数学分析简明教程(第2版)(上册) 下载 mobi pdf epub txt 电子书 格式 2024

数学分析简明教程(第2版)(上册) 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

照顾初学者需要,讲述数学分析基础知识。

评分

晚上下单第二天中午就到了

评分

物流给力,发货速度,赞一个!

评分

帮同学买的我没有看。

评分

不错,还可以

评分

不错,很快又好,这个书内容很适合初学者。

评分

很好的书,慢慢看,京东是个不错的买书地! “知识就是力量”,这是英国著名学者培根说的。诚然,知识对于年青一代何等重要。而知识并非生来就有、随意就生的,最主要的获取途径是靠读书。在读书中,有“甘”也有“苦”。 “活到老,学到老”,这句话简洁而极富哲理地概括了人生的意义。虽说读书如逆水行舟,困难重重,苦不堪言;但是,若将它当作一种乐趣,没有负担,像是策马于原野之上,泛舟于西湖之间,尽欢于游戏之中。这样,读书才津津有味、妙不可言。由此,读书带来的“甘甜”自然而然浮出水面,只等着你采撷了。 读书,若只埋首于“书海”中,长此以往,精神得不到适当地调节,“恹倦”的情绪弥满脑际,到终来不知所云,索然无味。这种“苦”是因人造成的,无可厚非。还有一种人思想上存在着问题,认为读书无关紧要,苦得难熬,活受罪。迷途的羔羊总有两种情况:一种是等待死亡;另一种能回头是岸,前程似锦 我的房间里有一整架书籍,每天独自摩挲大小不一的书,轻嗅清清淡淡的油墨香,心中总是充满一股欢欣与愉悦。取出一册,慢慢翻阅,怡然自得。   古人读书有三味之说,即“读经味如稻梁,读史味如佳肴,诸子百家,味如醯醢”。我无法感悟得如此精深,但也痴书切切,非同寻常。   记得小时侯,一次,我从朋友那儿偶然借得伊索寓言,如获至宝,爱不释手。读书心切,回家后立即关上房门。灯光融融,我倚窗而坐。屋内,灯光昏暗,室外,灯火辉煌,街市嘈杂;我却在书中神游,全然忘我。转眼已月光朦胧,万籁俱寂,不由得染上了一丝睡意。再读两篇才罢!我挺直腰板,目光炯炯有神,神游伊索天国。   迷迷糊糊地,我隐约听到轻柔的叫喊声,我揉了揉惺忪的睡眼,看不真切,定神一听,是妈妈的呼唤,我不知在写字台上趴了多久。妈妈冲着我笑道:“什么时候变得这么用功了?”我的脸火辣辣的,慌忙合书上床,倒头便睡。   从此,读书就是我永远的乐事。外面的世界确实五彩缤纷,青山啊,绿水啊,小鸟啊,小猫啊,什么也没有激发起我情趣,但送走白日时光的我,情由独钟——在幽静的房间里伴一盏灯,手执一卷,神游其中,任思绪如骏马奔腾,肆意驰骋,饱揽异域风情,目睹历史兴衰荣辱。与住人公同悲同喜,与英雄人物共沉共浮,骂可笑可鄙之辈,哭可怜可敬之士。体验感受主人公艰难的生命旅程,品尝咀嚼先哲们睿智和超凡的见解,让理性之光粲然于脑海,照亮我充满荆棘与坎坷之途。在书海中,静静地揣摩人生的快乐,深深地感知命运的多舛,默默地慨叹人世的沧桑。而心底引发阵阵的感动,一股抑制不住的激动和灵感奔涌。于是乎,笔尖不由得颤动起来,急于想写什么,想说什么……   闲暇之余,读书之外,仍想读书寄情于此,欣然自愉。正如东坡老先生所云:“此心安处吾乡。”   早晨,我品香茗读散文,不亦乐乎!中午,我临水倚林读小说,不亦乐乎!晚上,我对窗借光吟诗词,不亦乐乎!整天都是快乐,因为我有书,我在!

评分

评分

好货

类似图书 点击查看全场最低价

数学分析简明教程(第2版)(上册) mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有