伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed]

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[美] 罗特曼 著



下载链接1
下载链接2
下载链接3
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-04-04

类似图书 点击查看全场最低价

图书介绍

出版社: 世界图书出版公司
ISBN:9787510005084
版次:1
商品编码:10104496
包装:平装
外文名称:Galois Theory 2nd ed
开本:24开
出版时间:2010-01-01
用纸:胶版纸
页数:157
正文语种:英语


相关图书





图书描述

内容简介

  《伽罗瓦理论(第2版)(英文版)》是第二版,较一版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。《伽罗瓦理论(第2版)(英文版)》是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和大理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;判别式;二次、三次、四次多项式的Galois群;结尾。

内页插图

目录

Preface to the Second Edition
Preface to the First Edition
To the Reader
Symmetry
Rings
Domains and Fields
Homomorphisms and Ideals
Quotient Rings
Polynomial Rings over Fields
Prime Ideals and Maximal Ideals
Irreducible Polynomials
Classical Formulas
Splitting Fields
The Galois Group
Roots of Unity
Solvability by Radicals
Independence of Characters
Galois Extensions
The Fundamental Theorem of Galois Theory

前言/序言

  There are too many errors in the first edition, and so a "corrected nth printing" would have been appropriate. However, given the opportunity to makechanges, I felt that a second edition would give me the flexibility to changeany portion of the text that I felt I could improve. The first edition aimedto give a geodesic path to the Fundamental Theorem of Galois Theory,and I still think its brevity is valuable. Alas, the book is now a bit longer,but I feel that the changes are worthwhile. I began by rewriting almost allthe text, trying to make proofs clearer, and often giving more details thanbefore. Since many students find the road to the Fundamental Theoreman intricate one, the book now begins with a short section on symmetrygroups of polygons in the plane; an analogy of polygons and their symmetry groups with polynomials and their Galois groups can serve as a guideby helping readers organize the various definitions and constructions. Theexposition has been reorganized so that the discussion of solvability byradicals now appears later; this makes the proof of the Abel-Ruffini theorem easier to digest. I have also included several theorems not in the firstedition. For example, the Casus Irreducibilis is now proved, in keepingwith a historical interest lurking in these pages.
  I am indebted to Gareth Jones at the University of Southampton who,after having taught a course with the first edition as text, sent me a detailed list of errata along with perspicacious comments and suggestions. Ialso thank Evan Houston, Adam Lewenberg, and Jack Shamash who madevaluable comments as well. This new edition owes much to the generosityof these readers, and I am grateful to them.

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] 下载 mobi epub pdf txt 电子书 格式

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] 下载 mobi pdf epub txt 电子书 格式 2025

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

正版的,非常值,快递也给力,必须给好评,就是感觉包装有点简陋啊哈哈不过书很好,看了下内容也都很不错,快递也很给力,东西很好物流速度也很快,和照片描述的也一样,给个满分吧下次还会来买。伽罗瓦理论,用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。

评分

喜欢Joseph Rotman的书。

评分

1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。

评分

还行的教材,瞎看吧。

评分

喜欢Joseph Rotman的书。

评分

好,我十分满意。我太满意了。哈哈哈哈

评分

天才的理论,很好

评分

物流满意,商品给力,对于京东服务,一直十分好评!

评分

好,我十分满意。我太满意了。哈哈哈哈

类似图书 点击查看全场最低价

伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有