黎曼几何 [Riemannian Geometry]

黎曼几何 [Riemannian Geometry] pdf epub mobi txt 电子书 下载 2025

[葡] 卡莫 著
承接 住宅 自建房 室内改造 装修设计 免费咨询 QQ:624617358 一级注册建筑师 亲自为您回答、经验丰富,价格亲民。无论项目大小,都全力服务。期待合作,欢迎咨询!QQ:624617358
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787506292184
版次:1
商品编码:10096470
包装:平装
外文名称:Riemannian Geometry
开本:24开
出版时间:2008-05-01
用纸:胶版纸
页数:300
正文语种:英语

具体描述

编辑推荐

  《黎曼几何》非常值得一读。

内容简介

  The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。
  The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。

内页插图

目录

Preface to the first edition
Preface to the second edition
Preface to the English edition
How to use this book
CHAPTER 0-DIFFERENTIABLE MANIFOLDS
1. Introduction
2. Differentiable manifolds;tangent space
3. Immersions and embeddings;examples
4. Other examples of manifolds,Orientation
5. Vector fields; brackets,Topology of manifolds

CHAPTER 1-RIEMANNIAN METRICS
1. Introduction
2. Riemannian Metrics

CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS
1. Introduction
2. Affine connections
3. Riemannian connections

CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS
1.Introduction
2.The geodesic flow
3.Minimizing properties ofgeodesics
4.Convex neighborhoods

CHAPTER 4-CURVATURE
1.Introduction
2.Curvature
3.Sectional curvature
4.Ricci curvature and 8calar curvature
5.Tensors 0n Riemannian manifoids

CHAPTER 5-JACOBI FIELDS
1.Introduction
2.The Jacobi equation
3.Conjugate points

CHAPTER 6-ISOMETRIC IMMERSl0NS
1.Introduction.
2.The second fundamental form
3.The fundarnental equations

CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS
1.Introduction.
2.Complete manifolds;Hopf-Rinow Theorem.
3.The Theorem of Hadamazd.

CHAPTER 8-SPACES 0F CONSTANT CURVATURE
1.Introduction
2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.
3.Hyperbolic space
4.Space forms
5.Isometries ofthe hyperbolic space;Theorem ofLiouville

CHAPTER 9一VARIATl0NS 0F ENERGY
1.Introduction.
2.Formulas for the first and second variations of enezgy
3.The theorems of Bonnet—Myers and of Synge-WeipJtein

CHAPTER 10-THE RAUCH COMPARISON THEOREM
1.Introduction
2.Ttle Theorem of Rauch.
3.Applications of the Index Lemma to immersions
4.Focal points and an extension of Rauch’s Theorem

CHAPTER 11—THE MORSE lNDEX THEOREM
1.Introduction
2.The Index Theorem

CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE
1.Introduction
2.Existence of closed geodesics
CHAPTER 13-THE SPHERE THEOREM
References
Index

前言/序言



用户评价

评分

黎曼几何最经典的教材~

评分

十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。

评分

很好的黎曼几何书,要花功夫慢慢来学习了。。。

评分

  能少做一分懦夫,

评分

古典微分几何起源于微积分,主要内容为曲线论和曲面论。欧拉、蒙日和高斯被公认为古典微分几何的奠基人。

评分

很不错的数学书。

评分

挺好的,下次有需要还是选择京东~~~

评分

评分

还可以,还可以!

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有