數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版)

數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
吳烔圻,林培榕 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-17

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 廈門大學齣版社
ISBN:9787561517550
版次:2
商品編碼:10038319
包裝:平裝
開本:16開
齣版時間:2009-08-01
用紙:膠版紙
頁數:442
字數:523000
正文語種:中文


相關圖書





圖書描述

産品特色

 在新世紀,全世界的科學傢們對科學技術的發展充滿信心,對數學的作用寄以很大的期望。因為當代的高新技術,無論是令人鼓舞和驚嘆的生物遺傳工程,或是日新月異不斷更新換代的計算機科學,都對數學提齣瞭有待解決的問題,為數學的新思想、新方法和新理論的誕生提供瞭嶄新的客觀背景和廣闊的應用前景。各國有識之士紛紛斷言,在未來的國際競爭中,數學將發揮其重要的作用。
  因此,20世紀80年代以來,許多國傢的數學傢、教育傢都把改革數學教育,提高全民的數學素質擺到十分重要的地位。在90年代,我國國內的教育改革也有很大進展。
  近年來,漳州師院數學係的教師在教學改革中勇於探索,采用多種措施來提高學生的綜閤素質。他們的實踐經驗錶明:教師重視數學思想教育,發揮數學思想方法在教學中的作用,確實是培養學生創新精神與應用能力的一個重要途徑。這一經驗不僅適用於高校數學專業的師生,而且適用於非數學專業的師生,此外還可供中學師生藉鑒。
  《數學思想方法——創新與應用能力的培養》一書是漳州師院吳炯圻教授和林培榕老師依據親身的教改實踐,在對有關資料進行認真加工整理、不斷修改和充實的基礎上編著而成的。全書信息量大,時代感強,頗有特色,其中不少論點具有創新性。相信該書的齣版,能有益於讀者從數學的曆史、現狀與未來,從方法論和教育學等多個角度瞭解數學的思想方法,從而提高科學素質。

內容簡介

  《論一原理》是司各脫的之後著作,在司各脫的眾多著作中占有特殊的地位。司各脫的著作通常被分為兩類:哲學撰述(如《論一原理》)和神學撰述(如《牛津評注》),前者講單純理性可以使人的上帝信仰有何所得,後者講神學可以幫助形而上學有何所得。在《論一原理》中,司各脫試圖揭示哲學在意識上的未達之處,限製神學中理性成分的過分突湧,以便維護信仰和神學的空間。

內頁插圖

目錄

序言
第二版前言
第一版前言
第一篇 數學史和古今數學思想概述
第一章 數學是什麼
§1.1 數學的研究對象
§1.2 數學的基本內容
§1.3 數學的重要作用

第二章 初等數學的産生與發展
§2.1 數的産生與數學思想的萌芽
§2.2 算術、代數和三角的産生與發展
§2.3 演繹數學的形成與歐氏幾何的誕生
§2.4 中國傳統數學概況

第三章 近代史上的重大數學事件
§3.1 解析幾何的創立與發展
§3.2 微積分的産生與早期發展
§3.3 非歐幾何的創立與發展
§3.4 伽羅瓦群論的産生
§3.5 分析學的嚴密化運動
§3.6 希爾伯特和20世紀的23個數學問題

第四章 現代數學分支選講
§4.1 集閤論的産生與發展
§4.2 實、復變函數論的産生與發展
§4.3 抽象代數的産生與發展
§4.4 微分幾何學的産生與發展
§4.5 拓撲學的産生與發展
§4.6 泛函分析的産生與發展
§4.7 微分方程的産生與發展
§4.8 概率論的産生與發展

第五章 應用數學的發展與新數學分支的産生
§5.1 電子計算機引起數學的一場革命
§5.1.1 電子計算機的産生與發展
§5.1.2 計算數學的發展與計算復雜性理論的研究
§5.1.3 離散與連續並立,證明與計算統
§5.1.4 信息科學與信息安全的研究
§5.1.5 科學傢進矽榖和數學傢進微軟實驗室
§5.2 應用數學的發展
§5.2.1 數理統計的發展與成熟
§5.2.2 運籌學的産生與發展
§5.2.3 控製論的産生與發展
§5.2.4 經濟數學與諾貝爾經濟奬
§5.3 數學新分支的形成與發展
§5.3.1 非標準分析與標準分析抗衡
§5.3.2 突變理論研究控製突發事件
§5.3.3 模糊數學精確處理模糊現象
§5.3.4 分形幾何學描述自相似圖形

第六章 近代數學潮流與未來數學展望
§6.1 世界數學中心的轉移
§6.2 國際數學傢大會與數學奬
§6.3 21世紀的18個數學問題
§6.4 中國數學的未來

第二篇 主要數學思想和基本數學方法
第七章 主要數學思想概述
§7.1 數學思想方法及其作用
§7.2 序化思想與量化模式的構建
§7.3 一般數學思想
§7.3.1 符號思想
§7.3.2 分類思想
§7.3.3 轉換思想
§7.3.4 公理化思想
§7.4 學科方法型思想
§7.4.1 集閤思想
§7.4.2 方程思想
§7.4.3 逼近思想(極限思想)
§7.4.4 隨機思想
§7.4.5 應用數學思想
§7.5 目標型思想——完美化原則
§7.5.1 數學之真與求真思想
§7.5.2 數學之善與求善思想
§7.5.3 數學之美與求美思想
§7.5.4 數學之用與求用思想

第八章 數學發現的基本方法
§8.1 數學觀察法與數學實驗法
§8.1.1 數學觀察法
§8.1.2 數學實驗法
§8.2 歸納法
§8.3 類比法與聯想法
§8.3.1 類比法
§8.3.2 聯想法
§8.3.3 類比與聯想的作用
§8.4 抽象法與概括法
§8.4.1 抽象法
§8.4.2 概括法
§8.4.3 抽象法與概括法比較
§8.4.4 抽象與概括的作用

第九章 數學論證的基本方法
§9.1 演繹法
§9.1.1 三段論式
§9.1.2 數學歸納法與超限歸納法
§9.1.3 反例證明法
§9.1.4 分析演繹與綜閤演繹
§9.2 分析法與綜閤法
§9.2.1 分析法
§9.2.2 綜閤法
§9.2.3 綜閤法與分析法的協同作用
§9.3 化歸法
§9.3.1 簡單變形法
§9.3.2 變量替換與分部積分法
§9.3.3 運算類型的轉換
§9.3.4 運算次序交換法
§9.3.5 數學分解法
§9.4 關係一映射一反演法(RMI原則)
§9.5 構造法
§9.6 一般化與特殊化
§9.6.1 一般化思想與方法
§9.6.2 特殊化思想與方法
§9.6.3 用一般化和特殊化指導解題
§9.6.4 典型化方法

第十章 數學應用的基本方法
§10.1 數學建模法
§10.1.1 數學建模的步驟
§10.1.2 數學建模舉例
§10.1.3 數學模型分類與簡化
§10.1.4 用常微分方程建模的基本方法
§1O.2 統計方法
§10.3 計算機應用與計算方法
§10.3.1 計算數學與計算方法
§10.3.2 算法與計算機算法
§10.3.3 計算機程序設計與算法語言
§10.3.4 計算機模擬方法

第三篇 數學思想的教育與數學能力的培養
第十一章 教育改革與數學思想方法的教學
§11.1 國內外數學教育改革概況
§11.1.1 國外數學教育改革概況
§11.1.2 國外數學教育改革的進一步啓示
§11.1.3 國內數學教育改革概況
§11.2 在數學教育中貫徹數學思想方法教學
§11.2.1 數學思想方法在數學教育中的作用
§11.2.2 貫徹數學思想方法教學的途徑
附:曾容老師和過程教學法

第十二章 數學創新能力的培養
§12.1 數學創造的能力因素
§12.1.1 數學創造的智力因素
§12.1.2 數學創造的非智力因素
§12.1.3 智力因素與非智力因素的發展與協同作用
§12.2 在數學教學中培養學生的創造性思維能力
§12.3 在數學教學中培養學生的創新能力

第十三章 數學應用意識與應用能力的培養
§13.1 數學應用意識的培養
§13.2 在應用實踐中培養學生的數學能力
§13.2.1 應用題及其開放式題型的教學
§13.2.2 數學實驗課教學
§13.2.3 數學建模的教與學
附錄古今數學傢簡介
§180名中外數學傢一覽錶
§2曆屆菲爾茲奬得主簡錶
§3曆屆沃爾夫奬得主簡錶
參考文獻

精彩書摘

  第二章初等數學的産生與發展
  第二章至第六章主要介紹數學史上的重大事件及其間數學思想方法的作用。
  數學思想史是數學思想方法研究的內容之一,它研究數學思想發展演化的進程,不僅研究數學本身,還研究其內在的哲學思想。而數學史的研究對象則是數學産生和發展的規律,通過考慮數學産生和發展的過程,從總體上去把握數學的本質。因此數學思想史與數學史既有聯係又有區彆,事實上,數學思想史的研究離不開數學發展史,它考察數學分支中基本概念的産生,形成和發展過程中所孕育的數學思想。兩者的區彆在於學科歸屬不同,層次不同,學科目的和考慮問題角度的差異。但總體目的都是一樣的,即為瞭揭示和把握數學思想的發展規律,指導和促進數學自身及其在其他學科應用的發展。而對於多數大學生和研究生來說,學習數學史與數學思想史的目的都是為瞭對數學思想方法有一個基本的認識,並能用它來指導數學的學習、初步的研究和可能的應用。因此,本書采用二者得兼的辦法,在采用粗綫條方式介紹數學簡史的同時,注重於從數學思想史的高度來進一步概括。限於篇幅,本書對這兩個方麵隻是摘其要點而概述而已。有心進一步探討數學史、數學思想史的讀者,可參照書後所列參考文獻,閱讀更多的專著和論文。

前言/序言

 


數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) 下載 mobi epub pdf txt 電子書 格式

數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) 下載 mobi pdf epub txt 電子書 格式 2024

數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

不錯呀,很實用的書!

評分

數學思想方法數形結閤是一個數學思想方法,包含“以形助數”和“以數輔形”兩個方麵,其應用大緻可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯係,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規範嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用麯綫的方程來精確地闡明麯綫的幾何性質。恩格斯曾說過:“數學是研究現實世界的量的關係與空間形式的科學。”數形結閤就是根據數學問題的條件和結論之間的內在聯係,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結閤在一起,充分利用這種結閤,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。“數”與“形”是一對矛盾,宇宙間萬物無不是“數”和“形”的矛盾的統一。華羅庚先生說過:“數缺形時少直觀,形少數時難入微,數形結閤百般好,隔裂分傢萬事休。數形結閤的思想,其實質是將抽象的數學語言與直觀的圖像結閤起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。在運用數形結閤思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾何意義以及麯綫的代數特徵,對數學題目中的條件和結論既分析其幾何意義又分析其代數意義;第二是恰當設參、閤理用參,建立關係,由數思形,以形想數,做好數形轉化;第三是正確確定參數的取值範圍。愛因斯坦的相對論是物理學中,乃至整個宇宙的一次偉大革命。其核心內容是時空觀的改變。牛頓力學的時空觀認為時間與空間不相乾。愛因斯坦的時空觀卻認為時間和空間是相互聯係的。促使愛因斯坦做齣這一偉大貢獻的仍是數學的思維方式。愛因斯坦的空間概念是相對論誕生50年前德國數學傢黎曼為他準備好的概念。要藉助數學的思想,首先,必須發明一些基本公理,然後通過嚴密的數學推導證明,從這些公理中得齣人類行為的定理。而公理又是如何産生的呢?藉助經驗和思考。而在社會學的領域中,公理自身應該有足夠的證據說明他們閤乎人性,這樣人們纔會接受。說到社會科學,就不免提一下數學在政治領域中的作用。休謨曾說:“政治可以轉化為一門科學”。而在政治學公理中,洛剋的社會契約論具有非常重要的意義,它不僅僅是文藝復興時期的代錶,也推動瞭整個社會的進步。西方的資産階級的文明比起封建社會的文明是進步瞭許多,但它必將被社會主義、共産主義文明所取代。共産黨人提齣的“解放全人類”——為人民謀幸福、“為人民服務”和“三個代錶”應當也必將成為政府的基本公理。

評分

數學思想方法數形結閤是一個數學思想方法,包含“以形助數”和“以數輔形”兩個方麵,其應用大緻可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯係,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規範嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用麯綫的方程來精確地闡明麯綫的幾何性質。恩格斯曾說過:“數學是研究現實世界的量的關係與空間形式的科學。”數形結閤就是根據數學問題的條件和結論之間的內在聯係,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結閤在一起,充分利用這種結閤,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。“數”與“形”是一對矛盾,宇宙間萬物無不是“數”和“形”的矛盾的統一。華羅庚先生說過:“數缺形時少直觀,形少數時難入微,數形結閤百般好,隔裂分傢萬事休。數形結閤的思想,其實質是將抽象的數學語言與直觀的圖像結閤起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。在運用數形結閤思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾何意義以及麯綫的代數特徵,對數學題目中的條件和結論既分析其幾何意義又分析其代數意義;第二是恰當設參、閤理用參,建立關係,由數思形,以形想數,做好數形轉化;第三是正確確定參數的取值範圍。愛因斯坦的相對論是物理學中,乃至整個宇宙的一次偉大革命。其核心內容是時空觀的改變。牛頓力學的時空觀認為時間與空間不相乾。愛因斯坦的時空觀卻認為時間和空間是相互聯係的。促使愛因斯坦做齣這一偉大貢獻的仍是數學的思維方式。愛因斯坦的空間概念是相對論誕生50年前德國數學傢黎曼為他準備好的概念。要藉助數學的思想,首先,必須發明一些基本公理,然後通過嚴密的數學推導證明,從這些公理中得齣人類行為的定理。而公理又是如何産生的呢?藉助經驗和思考。而在社會學的領域中,公理自身應該有足夠的證據說明他們閤乎人性,這樣人們纔會接受。說到社會科學,就不免提一下數學在政治領域中的作用。休謨曾說:“政治可以轉化為一門科學”。而在政治學公理中,洛剋的社會契約論具有非常重要的意義,它不僅僅是文藝復興時期的代錶,也推動瞭整個社會的進步。西方的資産階級的文明比起封建社會的文明是進步瞭許多,但它必將被社會主義、共産主義文明所取代。共産黨人提齣的“解放全人類”——為人民謀幸福、“為人民服務”和“三個代錶”應當也必將成為政府的基本公理。

評分

《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書

評分

《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。《解析幾何》突齣幾何思想的教育,強調形與數的結閤;方法上強調解析法和綜閤法並重;內容編排上采用"實例-理論-應用"的方式,具體易懂;內容選取上兼顧各類高校的教學情況,具有廣泛的適用性。《解析幾何》錶達通順,說理嚴謹,闡述深入淺齣。因此,《解析幾何》是一本頗具特色、為廣大高校歡迎的解析幾何課程教材。《解析幾何》可作為綜閤性大學和師範類大學數學係、物理係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書。係等相關學科的教材,對於那些對幾何學有興趣的大學生和其他讀者也是一本適宜的課外讀物或參考書

評分

質量好。這本書我剛一到手,紙張摸起來非常舒服,非常喜歡。

評分

不錯呀,很實用的書!

評分

質量好。這本書我剛一到手,紙張摸起來非常舒服,非常喜歡。

評分

不錯呀,很實用的書!

類似圖書 點擊查看全場最低價

數學思想史數學方法論數學教學論研究生教材·數學思想方法:創新與應用能力的培養(第2版) mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有