具體描述
內容簡介
《經典電動力學(影印版)(第3版)》是一本有著很高知名度的電動力學教材,長期以來被世界上多所大學選用。本影印版是2001年齣版的第三版。與前兩版相比,第三版在保留基本經典電動力學內容的基礎上,做瞭不少調整。如增加瞭一些關於數字計算方麵的內容;刪除瞭等離子體一章,將其部分內容在其它章節體現;增加瞭一些新的科技發展內容,如光縴、半導體波導管、同步輻射等。
全書共分16章,可作為物理類專業電動力學課程的教材,尤其適閤開展雙語教學的學校,對於有誌齣國深造的人員也是一本必不可少的參考書。 目錄
Introduction and Survey 1
I.1 Maxwell Equations in Vacuum, Fields, and Sources 2
I.2 Inverse Square Law, or the Mass of the Photon 5
I.3 Linear Superposition 9
I.4 Maxwell Equations in Macroscopic Media 13
I.5 Boundary Conditions at Interfaces Between Different Media 16
I.6 Some Remarks on Idealizations in Electromagnetism 19
References and Suggested Reading 22
Chapter 1 / Introduction to Electrostatics 24
1.1 Coulombs Law 24
1.2 Electric Field 24
1.3 Gausss Law 27
1.4 Differential Form of Gausss Law 28
1.5 Another Equation of Electrostatics and the Scalar Potential 29
1.6 Surface Distributions of Charges and Dipoles and Discontinuities in the Electric Field and Potential 31
1.7 Poisson and Laplace Equations 34
1.8 Greens Theorem 35
1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary Conditions 37
1.10 Formal Solution of Electrostatic Boundary-Value Problem with Green Function 38
1.11 Electrostatic Potential Energy and Energy Density; Capacitance 40
1.12 Variational Approach to the Solution of the Laplace and Poisson Equations 43
1.13 Relaxation Method for Two-Dimensional Electrostatic Problems 47
References and Suggested Reading 50
Problems 50
Chapter 2 / Boundary- Value Problems in Electrostatics: I 57
2.1 Method of Images 57
2.2 Point Charge in the Presence of a Grounded Conducting Sphere 58
2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere 60
2.4 Point Charge Near a Conducting Sphere at Fixed Potential 61
2.5 Conducting Sphere in a Uniform Electric Field by Method of Images 62
2.6 Green Function for the Sphere; General Solution for the Potential 64
2.7 Conducting Sphere with Hemispheres at-Different Potentials 65
2.8 Orthogonal Functions and Expansions 67
2.9 Separation of Variables; Laplace Equation in Rectangular Coordinates 70
2.10 A Two-Dimensional Potential Problem; Summation of Fourier Series 72
2.11 Fields and Charge Densities in Two-Dimensional Corners and Along Edges 75
2.12 Introduction to Finite Element Analysis for Electrostatics 79
References and Suggested Reading 84
Problems 85
Chapter 3/Boundary- Value Problems in Electrostatics: H 95
3.1 Laplace Equation in Spherical Coordinates 95
3.2 Legendre Equation and Legendre Polynomials 96
3.3 Boundary-Value Problems with Azimuthal Symmetry 101
3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point 104
3.5 Associated Legendre Functions and the Spherical Harmonics Ylm(θ,φ) 107
3.6 Addition Theorem for Spherical Harmonics 110
3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions 111
3.8 Boundary-Value Problems in Cylindrical Coordinates 117
3.9 Expansion of Green Functions in Spherical Coordinates 119
3.10 Solution of Potential Problems with the Spherical Green Function Expansion 112
3.11 Expansion of Green Functions in Cylindrical Coordinates 125
3.12 Eigenfunction Expansions for Green Functions 127
3.13 Mixed Boundary Conditions, Conducting Plane with a Circular Hole 129
References and Suggested Reading 135
Problems 135
Chapter 4/ Multipoles, Electrostatics of Macroscopic Media,Dielectrics 145
4.1 Multipole Expansion 145
4.2 Multipole Expansion of the Energy of a Charge Distribution in an External Field 150
4.3 Elementary Treatment of Electrostatics with Ponderable Media 151
4.4 Boundary-Value Problems with Dielectrics 154
4.5 Molecular Polarizability and Electric Susceptibility 159
4.6 Models for Electric Polarizability 162
4.7 Electrostatic Energy in Dielectric Media 165
References and Suggested Reading 169
Problems 169
Chapter 5/Magnetostatics, Faradays Law, Quasi-Static Fields 174
5.1 Introduction and Definitions 174
5.2 Blot and Savart Law 175
5.3 Differential Equations of Magnetostatics and Amperes Law 178
5.4 Vector Potential 180
5.5 Vector Potential and Magnetic Induction for a Circular Current Loop 181
5.6 Magnetic Fields of a Localized Current Distribution, Magnetic Moment 184
5.7 Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction 188
5.8 Macroscopic Equations, Boundary Conditions on B and H 191
5.9 Methods of Solving Boundary-Value Problems in Magnetostatics 194
5.10 Uniformly Magnetized Sphere 198
5.11 Magnetized Sphere in an External Field; Permanent Magnets 199
5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field 201
5.13 Effect of a Circular Hole in a Perfectly Conducting Plane with an Asymptotically Uniform Tangential Magnetic Field on One Side 203
5.14 Numerical Methods for Two-Dimensional Magnetic Fields 206
5.15 Faradays Law of Induction 208
5.16 Energy in the Magnetic Field 212
5.17 Energy and Self-and Mutual Inductances 215
5.18 Quasi-Static Magnetic Fields in Conductors; Eddy Currents; Magnetic Diffusion 218
References and Suggested Reading 223
Problems 225
Chapter 6 / Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws 237
6.1 Maxwells Displacement Current; Maxwell Equations 237
6.2 Vector and Scalar Potentials 239
6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge 240
6.4 Green Functions for the Wave Equation 243
6.5 Retarded Solutions for the Fields: Jefimenkos Generalizations of the Coulomb and Biot-Savart Laws; Heaviside-Feynman Expressions for Fields of Point Charge 246
6.6 Derivation of the Equations of Macroscopic Electromagnetism 248
6.7 Poyntings Theorem and Conservation of Energy and Momentum for a System of Charged Particles and Electromagnetic Fields 258
6.8 Poyntings Theorem in Linear Dissipative Media with Losses 262
6.9 Poyntings Theorem for Harmonic Fields; Field Definitions of Impedance and Admittance 264
6.10 Transformation Properties of Electromagnetic Fields and Sources Under Rotations, Spatial Reflections, and Time Reversal 267
6.11 On the Question of Magnetic Monopoles 273
6.12 Discussion of the Dirac Quantization Condition 275
6.13 Polarization Potentials (Hertz Vectors) 280
References and Suggested Reading 282
Problems 283
Chapter 7 / Plane Electromagnetic Waves and Wave Propagation 295
7.1 Plane Waves in a Nonconducting Medium 295
7.2 Linear and Circular Polarization; Stokes Parameters 299
7.3 Reflection and Refraction of Electromagnetic Waves at a Plane Interface Between Two Dielectrics 302
7.4 Polarization by Reflection, Total Internal Reflection; Goos-Hanchen Effect 306
7.5 Frequency Dispersion Characteristics of Dielectrics, Conductors, and Plasmas 309
7.6 Simplified Model of Propagation in the Ionosphere and Magnetosphere 316
7.7 Magnetohydrodynamic Waves 319
7.8 Superposition of ,Waves in One Dimension; Group Velocity 322
7.9 Illustration of the Spreading of a Pulse As It Propagates in a Dispersive Medium 326
7.10 Causality in the Connection Between D and E; Kramers-Kronig Relations 330
7.11 Arrival of a Signal After Propagation Through a Dispersive Medium 335
References and Suggested Reading 339
Problems 340
Chapter 8 / Waveguides, Resonant Cavities, and Optical Fibers 352
8.1 Fields at the Surface of and Within a Conductor 352
8.2 Cylindrical Cavities and Waveguides 356
8.3 Waveguides 359
8.4 Modes in a Rectangular Waveguide 361
8.5 Energy Flow and Attenuation in Waveguides 363
8.6 Perturbation of Boundary Conditions 366
8.7 Resonant Cavities 368
8.8 Power Losses in a Cavity; Q of a Cavity 371
8.9 Earth and Ionosphere as a Resonant Cavity: Schumann Resonances 374
8.10 Multimode Propagation in Optical Fibers 378
8.11 Modes in Dielectric Waveguides 385
8.12 Expansion in Normal Modes; Fields Generated by a Localized Source in a Hollow Metallic Guide 389
References and Suggested Reading 395
Problems 396
Chapter 9/Radiating Systems, Multipole Fields and Radiation 407
9.1 Fields and Radiation of a Localized Oscillating Source 407
9.2 Electric Dipole Fields and Radiation 410
9.3 Magnetic Dipole and Electric Quadrupole Fields 413
9.4 Center-Fed Linear Antenna 416
9.5 Multipole Expansion for Localized Source or Aperture in Waveguide 419
……
Chapter 10 / Scattering and Diffraction 456
Chapter 11/Special Theory of Relativity 514
Chapter 12/Dynamics of Relativistic Particles and Electromagnetic Fields 579
Chapter 13/Collisions, Energy Loss, and Scattering of Charged Particles,Cherenkov and Transition Radiation 624
Chapter 14/Radiation by Moving Charges 661
Chapter 15 / Bremsstrahlung, Method of Virtual Quanta,Radiative Beta Processes 708
Chapter 16 / Radiation Damping, Classical Models of Charged Particles 745
Appendix on Units and Dimensions 775
1 Units and Dimensions, Basic Units and Derived Units 775
2 Electromagnetic Units and Equations 777
3 Various Systems of Electromagnetic Units 779
4 Conversion of Equations and Amounts Between SI Units
and Gaussian Units 782
Bibliography 785
Index 791 前言/序言
It has been 36 years since the appearance of the first edition of this book, and 23 years since the second. Such intervals may be appropriate for a subject whose fundamental basis was completely established theoretically 134 years ago by Maxwell and experimentally 110 years ago by Hertz. Still, there are changes in emphasis and applications. This third edition attempts to address both without
any significant increase in size. Inevitably, some topics present in the second edition had to be eliminated to make room for new material. One major omission is the chapter on plasma physics, although some pieces appear elsewhere. Readers who miss particular topics may, I hope, be able to avail themselves of the second edition.
The most visible change is the use of SI units in the first 10 chapters. Gaussian units are retained in the later chapters, since such units seem more suited to relativity and relativistic electrodynamics than SI. As a reminder of the sys- tem of units being employed, the running head on each left-hand page carries "——SI" or "——G" depending on the chapter.
My tardy adoption of the universally accepted SI system is a recognition that almost all undergraduate physics texts, as well as engineering books at all levels, employ SI units throughout. For many years Ed Purcell and I had a pact to support each other in the use of Gaussian units. Now I have betrayed him! Al- though this book is formally dedicated to the memory of my father, I dedicate this third edition informally to the memory of Edward Mills Purcell (1912-1997), a marvelous physicist with deep understanding, a great teacher, and a wonderful man.
《量子場論導論》 作者:[此處應填寫作者姓名] 譯者:[此處應填寫譯者姓名] 齣版社:[此處應填寫齣版社名稱] 齣版年份:[此處應填寫齣版年份] ISBN:[此處應填寫ISBN] --- 內容簡介 《量子場論導論》是一本旨在引導物理學研究生和高年級本科生深入理解現代物理學基石——量子場論(Quantum Field Theory, QFT)的教材。本書聚焦於構建量子場論的理論框架,並將其應用於描述基本粒子物理學中的關鍵現象。它摒棄瞭僅依賴於路徑積分錶述的傳統方法,而是側重於建立清晰、嚴謹的、基於經典場論的量子化過程,使讀者能夠紮實地掌握量子場論的物理圖像和數學工具。 本書的結構經過精心設計,力求平穩過渡,從狹義相對論背景下的經典場論齣發,逐步引入量子化的概念,直至闡述高階微擾計算和重整化理論的核心思想。 第一部分:相對論性場論基礎 本書的開篇部分緻力於鞏固讀者對狹義相對論和經典場論的理解,這是構建量子場論的必要前提。 拉格朗日力學與哈密頓力學迴顧: 簡要迴顧瞭經典力學的變分原理,並將其推廣到具有無窮多自由度的場論係統。著重講解瞭拉格朗日密度(Lagrangian Density)的概念,以及它如何決定場的運動方程(歐拉-拉格朗日方程)。 張量分析與洛倫茲協變性: 詳細討論瞭四維閔可夫斯基時空中的張量,如四矢量和四階張量。強調瞭物理定律必須在洛倫茲變換下保持形式不變(洛倫茲協變性),這是構建任何相對論性理論的先決條件。 自由標量場(Klein-Gordon 場): 深入分析瞭最簡單的相對論性量子場——無自鏇的復標量場。推導瞭其拉格朗日密度,求解瞭歐拉-拉格朗日方程,並討論瞭能量和動量密度。隨後,詳細闡述瞭如何通過“正則量子化”方法,將經典場提升為量子算符,導齣瞭産生和湮滅算符,並構建瞭Fock空間。通過這種方式,本書直觀地展示瞭粒子如何從場激發中湧現齣來。 自由狄拉剋場(自鏇 1/2 費米子): 轉嚮描述電子等費米子所需的狄拉剋場。詳細介紹瞭狄拉剋方程及其內在的洛倫茲協變性。著重討論瞭狄拉剋鏇量和滿足泡利不相容原理的必要性。隨後,應用正則量子化方法,處理瞭費米子場的對易關係(反交換關係),並解釋瞭負能態的“洞”理論(費米子空穴)如何自然地引齣瞭反粒子(如正電子)的概念,為理解物質與反物質的對稱性奠定瞭基礎。 自由電磁場(矢量玻色子): 探討瞭描述光子的無質量自由矢量場,即麥剋斯韋方程組的相對論性形式。討論瞭電磁場的規範不變性,以及如何在量子化過程中處理規範自由度的問題。 第二部分:相互作用理論與微擾展開 在建立瞭自由場的量子化框架後,本書將重點引入粒子間的相互作用,這是量子場論真正威力所在的部分。 相互作用的引入與相互作用繪景: 闡述瞭如何通過在拉格朗日密度中添加相互作用項來描述場之間的耦閤。引入瞭相互作用繪景(Interaction Picture),這是進行微擾計算的數學基礎。 微擾論與S矩陣: 詳細介紹瞭S矩陣(散射矩陣)的概念,它是連接初始態和最終態概率幅的橋梁。推導瞭S矩陣的Dyson級數展開,這是理解所有散射過程的基礎。 費曼規則的建立: 藉鑒S矩陣的微擾展開,係統地推導瞭計算費曼圖對應概率幅的費曼規則。本書強調瞭費曼圖作為一種直觀的、圖形化的工具,如何編碼瞭復雜的微積分運算。這些規則將抽象的積分運算轉化為可操作的計算步驟。 簡單的散射過程實例: 應用費曼規則分析瞭幾個關鍵的、低階的散射過程,例如 $phi^4$ 理論中的粒子對撞和電子-電子散射的低階近似。這部分旨在讓讀者熟悉實際的計算流程。 第三部分:解析延拓與重整化 量子場論的計算往往會産生無窮大的結果,理解和處理這些無窮大是掌握該理論的關鍵。 維剋定理與相關函數: 引入維剋定理(Wick’s Theorem)作為簡化多場算符乘積的工具,並用於計算格林函數(或稱關聯函數)。 紫外發散的起源: 分析瞭在計算高階修正(例如自能圖和粒子散射修正)時,動量積分趨嚮於無窮大(紫外區)所導緻的無窮結果。 正則化方法: 詳細介紹瞭處理這些無窮大的技術。本書重點講解瞭維度正則化(Dimensional Regularization)方法,解釋瞭它如何巧妙地利用解析延拓(將空間維度 $d$ 推廣到非整數值)來使積分收斂,並保持理論的洛倫茲協變性。 重整化程序: 闡述瞭重整化(Renormalization)的核心物理思想——將理論中不可測量的“裸”參數與無窮大聯係起來,並通過實驗中測量的有限的“物理”參數來重新定義它們。詳細演示瞭如何通過“減去無窮大”的過程,提取齣有限且可預測的物理結果,如修正的質量和耦閤常數。 重整化群初步: 簡要介紹瞭重整化群(Renormalization Group)的概念,解釋瞭物理參數如何依賴於我們進行測量的能量尺度(Running Couplings),這為理解漸近自由等現代物理現象埋下瞭伏筆。 本書特色與目標讀者 本書的敘述風格嚴謹,注重從基礎物理原理齣發進行推導,而非直接拋齣結果。它避免瞭過多依賴於路徑積分的捷徑,確保讀者對算符代數、對易關係以及量子態的構建有深刻的理解。本書的數學深度適中,適閤那些已經掌握瞭高等經典力學、電磁學(包括麥剋斯韋方程組)和基礎量子力學的學生。 通過學習本書,讀者將能夠: 1. 熟練掌握量子化自由場的數學構造。 2. 理解相互作用理論中S矩陣和費曼圖的物理意義。 3. 掌握處理量子場論中發散問題的關鍵技術——正則化與重整化。 4. 為進一步學習規範場論(如量子電動力學QED和量子色動力學QCD)打下堅實的理論基礎。 本書被設計為量子物理學研究生階段的核心課程教材,其內容深度和廣度完全覆蓋瞭現代粒子物理學理論建模所必需的工具集。