内容简介
《概率论与随机过程中的泛函分析(影印版)》主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐而出版。
目录
Preface
1 Preliminaries, notations and conventions
1.1 Elements of topology
1.2 Measure theory
1.3 Functions of bounded variation. Riemann-Stieltjes integral
1.4 Sequences of independent random variables
1.5 Convex functions. Holder and Minkowski inequalities
1.6 The Cauchy equation
2 Basic notions in functional analysis
2.1 Linear spaces
2.2 Banach spaces
2.3 The space of bounded linear operators
3 Conditional expectation
3.1 Projections in Hilbert spaces
3.2 Definition and existence of conditional expectation
3.3 Properties and examples
3.4 The Radon-Nikodym Theorem
3.5 Examples of discrete martingales
3.6 Convergence of self-adjoint operators
3.7 ... and of martingales
4 Brownian motion and l-Iilbert spaces
4.1 Gaussian families & the definition of Brownian motion
4.2 Complete orthonormal sequences in a Hilbert space
4.3 Construction and basic properties of Brownian motion
4.4 Stochastic integrals
5 Dual spaces and convergence of probability measures
5.1 The Hahn-Banach Theorem
5.2 Form of linear functionals in specific Banach spaces
5.3 Thedual of an operator
5.4 Weak and weak* topologies
5.5 The Central Limit Theorem
5.6 Weak convergence in metric spaces
5.7 Compactness everywhere
5.8 Notes on other modes of convergence
6 The Gelfand transform and its applications
6.1 Banach algebras
6.2 The Gelfand transform
6.3 Examples of Gelfand transform
6.4 Examples of explicit calculations of Gelfand transform
6.5 Dense subalgebras of C(S)
6.6 Inverting the abstract Fourier transform
6.7 The Factorization Theorem
7 Semigroups of operators and Levy processes
7.1 The Banach-Steinhaus Theorem
7.2 Calculus of Banach space valued functions
7.3 Closed operators
7.4 Semigroups of operators
7.5 Brownian motion and Poisson process semigroups
7.6 More convolution semigroups
7.7 The telegraph process semigroup
7.8 Convolution semigroups of measures on semigroups
8 Markov processes and semigroups of operators
8.1 Semigroups of operators related to Markov processes
8.2 The Hille-Yosida Theorem
8.3 Generators of stochastic processes
8.4 Approximation theorems
9 Appendixes
9.1 Bibliographical notes
9.2 Solutions and hints to exercises
9.3 Some commonly used notations
References
Index
天元基金影印数学丛书:概率论与随机过程中的泛函分析(影印版) [Functional Analysis for Probability and Stochastic Processes] 下载 mobi epub pdf txt 电子书 格式
天元基金影印数学丛书:概率论与随机过程中的泛函分析(影印版) [Functional Analysis for Probability and Stochastic Processes] 下载 mobi pdf epub txt 电子书 格式 2025
评分
☆☆☆☆☆
学习中,喜欢这样的书,,,
评分
☆☆☆☆☆
20世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
评分
☆☆☆☆☆
很方便很实在非常满意
评分
☆☆☆☆☆
泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。
评分
☆☆☆☆☆
看了前几页 应该还可以 对学过泛函分析和测度论的应该很简单
评分
☆☆☆☆☆
《概率论与随机过程中的泛函分析(影印版)》主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐而出版。
评分
☆☆☆☆☆
对于概率、统计等专业的学生欲结合本专业背景学习泛函的话,这是很合适的一本。天元基金资助出版,使得本书价格甚至比普通国内教材还低,值得看。
评分
☆☆☆☆☆
书的质量挺好的,适合有一定数学基础的人看
评分
☆☆☆☆☆
印刷清晰。才看了几页,感觉作者挺幽默的,叙述简洁。
天元基金影印数学丛书:概率论与随机过程中的泛函分析(影印版) [Functional Analysis for Probability and Stochastic Processes] mobi epub pdf txt 电子书 格式下载 2025