正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有

正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
于雷 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

图书介绍

店铺: 悟元图书专营店
出版社: 吉林科学技术出版社有限责任公司
ISBN:9787538485318
商品编码:30180533158
包装:平装
出版时间:2015-07-01


相关图书





图书描述

基本信息

书名:破解福尔摩斯思维习惯:印度数学

定价:29.90元

作者:于雷

出版社:吉林科学技术出版社有限责任公司

出版日期:2015-07-01

ISBN:9787538485318

字数:

页码:300

版次:1

装帧:平装

开本:16开

商品重量:0.4kg

编辑推荐


※※※改变固有的思维方式

※※※数学不在是头疼的难事

※※※轻松搞定平方、立方

※※※考试不再为算数浪费时间

※※※简单的数学解题方法

内容提要


《印度数学》整理总结了数十种影响了世界几千年的印度秘密计算法,还包括平方、立方、平方根、立方根、方程组以及神秘奇特的手算法和验算法等。这些方法会提高学生加减乘除的运算能力,不仅仅能够提高学生的数学成绩,更能让他们的思维方式得到改变,让他们从一开始就站在一个较高的起点上。对孩子来说,它可以提高对数学的兴趣,爱上数学,爱上动脑;对学生来说,它可以提高计算的速度和准确性,提高学习成绩;对成年人来说,它可以改变我们的思维方式,让你在工作和生活中出类拔萃、与众不同。如今,我们将印度数学的秘密计算法在本书中公开。让我们进入印度数学的奇妙世界,学习魔法般神奇的计算法吧!

目录


章 印度加法计算法…………………………………………………… 009

1. 从左往右计算加法… ………………………………………………… 009

2. 两位数的加法运算… ………………………………………………… 013

3. 三位数的加法运算… ………………………………………………… 016

4. 巧用补数算加法… …………………………………………………… 019

5. 用凑整法算加法… …………………………………………………… 022

6. 四位数的加法运算… ………………………………………………… 025

7. 在格子里算加法… …………………………………………………… 028

8. 计算连续自然数的和… ……………………………………………… 032

第二章 印度减法计算法…………………………………………………… 036

1. 从左往右计算减法… ………………………………………………… 036

2. 两位数的减法运算… ………………………………………………… 039

3. 两位数减一位数的运算… …………………………………………… 042

4. 三位数减两位数的运算… …………………………………………… 045

5. 三位数的减法运算… ………………………………………………… 048

6. 巧用补数算减法… …………………………………………………… 051

7. 用凑整法算减法… …………………………………………………… 054

第三章 印度乘法计算法…………………………………………………… 057

1. 十位数相同、个位相加为10的两位数相乘… ……………………… 057

2. 个位数相同、十位相加为10的两位数相乘… ……………………… 060

3. 十位数相同的两位数相乘… ………………………………………… 063

4. 三位以上的数字与11相乘… ………………………………………… 067

5. 三位以上的数字与111相乘…………………………………………… 072

6. 任意数与9相乘………………………………………………………… 076

7. 任意数与99相乘… …………………………………………………… 079

8. 任意数与999相乘……………………………………………………… 082

9. 11~19之间的整数相乘… …………………………………………… 085

10. 100~110之间的整数相乘…………………………………………… 090

11. 在三角格子里算乘法………………………………………………… 093

12. 在表格里算乘法……………………………………………………… 097

13. 用四边形算两位数的乘法…………………………………………… 101

14. 用交叉计算法算两位数的乘法……………………………………… 104

15. 三位数与两位数相乘………………………………………………… 108

16. 三位数乘以三位数…………………………………………………… 112

17. 四位数与两位数相乘………………………………………………… 116

18. 四位数乘以三位数…………………………………………………… 120

19. 用错位法算乘法……………………………………………………… 125

20. 用节点法算乘法……………………………………………………… 129

21. 用因数分解法算乘法………………………………………………… 133

22. 用模糊中间数算乘法………………………………………………… 137

23. 用较小数的平方算乘法……………………………………………… 140

24. 接近50的数字相乘…………………………………………………… 143

25. 接近100的数字相乘… ……………………………………………… 147

26. 接近200的数字相乘… ……………………………………………… 151

27. 将数字分解成容易计算的数字再进行计算………………………… 155

第四章 印度乘方计算法…………………………………………………… 158

1. 尾数为5的两位数的平方……………………………………………… 158

2. 尾数为6的两位数的平方……………………………………………… 161

3. 尾数为7的两位数的平方……………………………………………… 164

4. 尾数为8的两位数的平方……………………………………………… 167

5. 尾数为9的两位数的平方……………………………………………… 170

6. 11~19平方的计算法… ……………………………………………… 173

7. 21~29平方的计算法… ……………………………………………… 176

8. 31~39平方的计算法… ……………………………………………… 179

9. 任意两位数的平方… ………………………………………………… 183

10. 任意三位数的平方…………………………………………………… 186

11. 用基数法计算三位数的平方………………………………………… 189

12. 以“10”开头的三、四位数平方的算法…………………………… 192

13. 两位数的立方………………………………………………………… 195

14. 用基准数法算两位数的立方………………………………………… 198

第五章 印度除法计算法及其他技巧… ………………………………… 201

1. 一个数除以9的神奇规律……………………………………………… 201

2. 如果除数以5结尾……………………………………………………… 206

3. 完全平方数的平方根… ……………………………………………… 209

4. 完全立方数的立方根… ……………………………………………… 219

5. 二元一次方程的解法… ……………………………………………… 222

6. 将循环小数转换成分数… …………………………………………… 225

7. 印度验算法… ………………………………………………………… 227

8. 一位数与9相乘的手算法……………………………………………… 231

9. 两位数与9相乘的手算法……………………………………………… 234

10. 6~10之间乘法的手算法… ………………………………………… 238

11. 11~15之间乘法的手算法…………………………………………… 241

12. 16~20之间乘法的手算法…………………………………………… 243

13. 神奇的数字规律……………………………………………………… 245

答 案…………………………………………………………………………… 249

作者介绍


于雷,出生于冰城哈尔滨,毕业于北京大学。做事认真严谨,喜欢读书和思考,长期致力于青少年益智和教育领域的研究,逻辑思维训练专家及畅销书作家。有7年图书出版经验。出版有《北大清华学生爱做的400个思维游戏》《逻辑思维训练500题》《青少年逻辑思维训练系列》等一批青年益智读物,深受广大读者欢迎。其中《逻辑思维训练500题》被北京图书大厦评为“2008年读者喜爱的图书(社科类)”,至今销售已逾12万册。

文摘


个位数相同、十位相加为10的两位数相乘

方法

(1)两个乘数的个位上的数字相乘为积的后两位数字(不足用0补)。

(2)两个乘数的十位上的数字相乘后加上个位上的数字为百位和千位数字。

例子

(1)计算93×13=______

3×3=9

9×1+3=12

所以93×13=1209

(2)计算27×87=______

7×7=49

2×8+7=23

所以27×87=2349

(3)计算74×34=______

4×4=16

7×3+4=25

所以74×34=2516


三位以上的数字与11相乘

方法

(1)把和11相乘的乘数写在纸上,中间和前后留出适当的空格。

如abcd×11,则将乘数abcd写成:

a b c d

(2)将乘数中相邻的两位数字依次相加求出的和依次写在乘数下面留出的空位

上。

a  b  c  d

a+b b+c c+d

(3)将乘数的首位数字写在左边,乘数的末尾数字写在右边。

a b c d

a a+b b+c c+d d

(4)第二排的计算结果即为乘数乘以11的结果(注意进位)。

例子一

(1)计算85436×11=______

8 5 4 3 6

8 8+5 5+4 4+3 3+6 6

8 13 9 7 9 6

进位:9 3 9 7 9 6

所以85436×11=939796

(2)计算123456×11=______

1 2 3 4 5 6

1 1+2 2+3 3+4 4+5 5+6 6

1 3 5 7 9 11 6

进位:1 3 5 8 0 1 6

所以123456×11=1358016


三位以上的数字与111相乘

方法

(1)把和111相乘的乘数写在纸上,中间和前后留出适当的空格。

如abc×111,积的位为a,第二位为a+b,第三位为a+b+c,第四位为b

+c,第五位为c。

(2)结果即为被乘数乘以111的结果(注意进位)。

例子

(1)计算543×111=______

积位为5,

第二位为5+4=9,

第三位为5+4+3=12,

第四位为4+3=7,

第五位为3。

即结果为5 9 12 7 3

进位后为60273

所以543×111=60273

如果被乘数为四位数abcd,那么积的位为a,第二位为a+b,第三位为a

+b+c,第四位为b+c+d,第五位为c+d,第六位为d。

(2)计算5123×111=______

积位为5,

第二位为5+1=6,

第三位为5+1+2=8,

第四位为1+2+3=6,

第五位为2+3=5,

第六位为3。

即结果为5 6 8 6 5 3

所以5123×111=568653





接近50的数字相乘

方法

(1)设定50为基准数,计算出两个数与50之间的差。

(2)将被乘数与乘数竖排写在左边,两个差竖排写在右边,中间用斜线隔开。

(3)将上两排数字交叉相加所得的结果写在第三排的左边。

(4)将两个差相乘所得的积写在右边。

(5)将第3步的结果乘以基准数50,与第4步所得结果加起来,即为结果。

例子

(1)计算46×42=______

先计算出46、42与50的差,分别为-4,-8,因此可以写成下列形式:

46/-4

42/-8

交叉相加,46-8或42-4,都等于38。

两个差相乘,(-4)×(-8)=32。

因此可以写成:

46/-4

42/-8

38/32

38×50+32=1932

所以46×42=1932


(2)计算53×42=______

先计算出53、42与50的差,分别为3,-8,因此可以写成下列形式:

53/3

42/-8

交叉相加,53-8或42+3,都等于45。

两个差相乘,3×(-8)=-24。

因此可以写成:

53/3

42/-8

45/-24

45×50-24=2226

所以53×42=2226

(3)计算61×52=______

先计算出61、52与50的差,分别为11,2,因此可以写成下列形式:

61/11

52/2

交叉相加,61+2或52+11,都等于63。

两个差相乘,11×2=22。

因此可以写成:

61/11

52/2

63/22

63×50+22=3172

所以61×52=3172




用因数分解法算乘法

两位数的平方我们已经知道如何计算了,有了这个基础,我们可以运用因数

分解法来使某些符合特定规律的乘法转变成简单的方式进行计算。这个特定的规

律就是:相乘的两个数之间的差必须为偶数。

方法

(1)找出被乘数和乘数的中间数(只有相乘的两个数之差为偶数,它们才有

中间数。)。

(2)确定被乘数和乘数与中间数之间的差。

(3)用因数分解法把乘法转变成平方差的形式进行计算。

例子

(1)计算17×13=______

首先找出它们的中间数为15(求中间数很简单,即将两个数相加除以2即可,

一般心算即可求出)。另外,计算出被乘数和乘数与中间数之间的差为2。

所以17×13=(15+2)×(15-2)

=152-22

=225-4

=221

所以17×13=221

(2)计算158×142=______

首先找出它们的中间数为150。另外,计算出被乘数和乘数与中间数之间的差

为8。

所以158×142=(150+8)×(150-8)

=1502-82

=22500-64

=22436

所以158×142=22436

(3)计算59×87=______

首先找出它们的中间数为73。另外,计算出被乘数和乘数与中间数之间的

差为14。

所以59×87=(73-14)×(73+14)

=732-142

=5329-196

=5133

所以59×87=5133

注意

被乘数与乘数相差越小,计算越简单。




用模糊中间数算乘法

有的时候,中间数的选择并不要取标准的中间数(即两个数的平均

数),我们还可以为了方便计算,取凑整或者平方容易计算的数作为中间数。

方法

(1)找出被乘数和乘数的模糊中间数a(即与相乘的两个数的中间数接近

并且有利于计算的整数。)。

(2)分别确定被乘数和乘数与中间数之间的差b和c。

(3)用公式(a+b)×(a+c)=a2+a×(b+c)+b×c进行计算。

例子

(1)计算47×38=______

首先找出它们的模糊中间数为40(与中间数相近,并容易计算的整数)。

另外,分别计算出被乘数和乘数与中间数之间的差为7和-2。

所以47×38=(40+7)×(40-2)

=402+40×(7-2)-7×2

=1600+200-14

=1786

所以47×38=1786

(2)计算72×48=______

首先找出它们的模糊中间数为50。另外,分别计算出被乘数和乘数与中间数

之间的差为22和-2。

所以72×48=(50+22)×(50-2)

=502+50×(22-2)-22×2

=2500+1000-44

=3456

所以72×48=3456

(3)计算112×98=______

首先找出它们的模糊中间数为100。另外,分别计算出被乘数和乘数与中间数

之间的差为12和-2。

所以112×98=(100+12)×(100-2)

=1002+100×(12-2)-12×2

=10000+1000-24

=10976

所以112×98=10976

序言


章 印度加法计算法…………………………………………………… 009

1. 从左往右计算加法… ………………………………………………… 009

2. 两位数的加法运算… ………………………………………………… 013

3. 三位数的加法运算… ………………………………………………… 016

4. 巧用补数算加法… …………………………………………………… 019

5. 用凑整法算加法… …………………………………………………… 022

6. 四位数的加法运算… ………………………………………………… 025

7. 在格子里算加 正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 下载 mobi epub pdf txt 电子书 格式


正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 下载 mobi pdf epub txt 电子书 格式 2024

正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

正版图书 破解福尔摩斯思维习惯:印度数学 9787538485318 吉林科学技术出版社有 mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有