發表於2025-01-09
書名:概率機器人
:99.00元
作者:塞巴斯蒂安·特龍
齣版社:機械工業齣版社
齣版日期:2017-05-01
ISBN:9787111504375
字數:517000
頁碼:495
版次:1
裝幀:平裝-膠訂
開本:16開
商品重量:0.4kg
《概率機器人》對概率機器人學這一新興領域進行瞭全麵的介紹。概率機器人學依賴統計技術錶示信息和進行決策,以容納當今大多數機器人應用中必然存在的不確定性,是機器人學的一個分支。它依賴統計技術錶示信息和製定決策。這樣做,可以接納在當今大多數機器人應用中引起的不確定性。本書主要專注於算法,對於每種算法,均提供瞭四項內容:①僞碼示例;②完整的數學推導;③實驗結果;④算法優缺點的詳細討論。
《概率機器人》包括瞭基礎知識、定位、地圖構建、規劃與控製四大部分。本書共17章,每章的後都提供瞭練習題和動手實踐的項目。相信本書可以加深讀者對概率機器人學的認識。
譯者序
原書前言
緻謝
Ⅰ部分 基礎知識
1章 緒論 1
1.1 機器人學中的不確定性 1
1.2 概率機器人學 2
1.3 啓示 6
1.4 本書導航 7
1.5 概率機器人課程教學 7
1.6 文獻綜述 8
2章 遞歸狀態估計 10
2.1 引言 10
2.2 概率的基本概念 10
2.3 機器人環境交互 14
2.3.1 狀態 15
2.3.2 環境交互 16
2.3.3 概率生成法則 18
2.3.4 置信分布 19
2.4 貝葉斯濾波 20
2.4.1 貝葉斯濾波算法 20
2.4.2 實例 21
2.4.3 貝葉斯濾波的數學推導 23
2.4.4 馬爾可夫假設 25
2.5 錶示法和計算 25
2.6 小結 26
2.7 文獻綜述 26
2.8 習題 27
3章 高斯濾波 29
3.1 引言 29
3.2 卡爾曼濾波 30
3.2.1 綫性高斯係統 30
3.2.2 卡爾曼濾波算法 31
3.2.3 例證 32
3.2.4 卡爾曼濾波的數學推導 33
3.3 擴展卡爾曼濾波 40
3.3.1 為什麼要綫性化 40
3.3.2 通過泰勒展開的綫性化 42
3.3.3 擴展卡爾曼濾波算法 44
3.3.4 擴展卡爾曼濾波的數學推導 44
3.3.5 實際考慮 46
3.4 無跡卡爾曼濾波 49
3.4.1 通過無跡變換實現綫性化 49
3.4.2 無跡卡爾曼濾波算法 50
3.5 信息濾波 54
3.5.1 正則參數 54
3.5.2 信息濾波算法 55
3.5.3 信息濾波的數學推導 56
3.5.4 擴展信息濾波算法 57
3.5.5 擴展信息濾波的數學推導 58
3.5.6 實際考慮 59
3.6 小結 60
3.7 文獻綜述 61
3.8 習題 62
4章 非參數濾波 64
4.1 直方圖濾波 64
4.1.1 離散貝葉斯濾波算法 65
4.1.2 連續狀態 65
4.1.3 直方圖近似的數學推導 67
4.1.4 分解技術 69
4.2 靜態二值貝葉斯濾波 70
4.3 粒子濾波 72
4.3.1基本算法 72
4.3.2 重要性采樣 75
4.3.3 粒子濾波的數學推導 77
4.3.4 粒子濾波的實際考慮和特性 79
4.4 小結 85
4.5 文獻綜述 85
4.6 習題 86
5章 機器人運動 88
5.1 引言 88
5.2 預備工作 89
5.2.1 運動學構型 89
5.2.2 概率運動學 89
5.3 速度運動模型 90
5.3.1 閉式計算 91
5.3.2 采樣算法 92
5.3.3 速度運動模型的數學推導 94
5.4 裏程計運動模型 99
5.4.1 閉式計算 100
5.4.2 采樣算法 102
5.4.3 裏程計運動模型的數學推導 104
5.5 運動和地圖 105
5.6 小結 108
5.7 文獻綜述 109
5.8 習題 110
6章 機器人感知 112
6.1 引言 112
6.2 地圖 114
6.3 測距儀的波束模型 115
6.3.1 基本測量算法 115
6.3.2 調節固有模型參數 119
6.3.3 波束模型的數學推導 121
6.3.4 實際考慮 126
6.3.5 波束模型的局限 127
6.4 測距儀的似然域 127
6.4.1 基本算法 127
6.4.2 擴展 130
6.5 基於相關性的測量模型 131
6.6 基於特徵的測量模型 133
6.6.1 特徵提取 133
6.6.2 地標的測量 133
6.6.3 已知相關性的傳感器模型 134
6.6.4 采樣位姿 135
6.6.5 進一步的考慮 137
6.7 實際考慮 137
6.8 小結 138
6.9 文獻綜述 139
6.10 習題 139
Ⅱ部分 定 位
7章 移動機器人定位:馬爾可夫與高斯 142
7.1 定位問題的分類 144
7.2 馬爾可夫定位 146
7.3 馬爾可夫定位圖例 147
7.4 擴展卡爾曼濾波定位 149
7.4.1 圖例 149
7.4.2 擴展卡爾曼濾波定位算法 151
7.4.3 擴展卡爾曼濾波定位的數學推導 151
7.4.4 物理實現 157
7.5 估計一緻性 161
7.5.1 未知一緻性的擴展卡爾曼濾波定位 161
7.5.2 *大似然數據關聯的數學推導 162
7.6 多假設跟蹤 164
7.7 無跡卡爾曼濾波定位 165
7.7.1 無跡卡爾曼濾波定位的數學推導 165
7.7.2 圖例 168
7.8 實際考慮 172
7.9 小結 174
7.10 文獻綜述 175
7.11 習題 176
8章 移動機器人定位:柵格與濛特卡羅 179
8.1 介紹 179
8.2 柵格定位 179
8.2.1 基本算法 179
8.2.2 柵格分辨率 180
8.2.3 計算開銷 184
8.2.4 圖例 184
8.3 濛特卡羅定位 189
8.3.1 圖例 189
8.3.2 濛特卡羅定位算法 191
8.3.3 物理實現 191
8.3.4 濛特卡羅定位特性 194
8.3.5 隨機粒子濛特卡羅定位:失效恢復 194
8.3.6 更改建議分布 198
8.3.7 庫爾貝剋-萊布勒散度采樣:調節樣本集閤大小 199
8.4 動態環境下的定位 203
8.5 實際考慮 208
8.6 小結 209
8.7 文獻綜述 209
8.8習題 211
Ⅲ部分 地圖構建
9章 占用柵格地圖構建 213
9.1 引言 213
9.2 占用柵格地圖構建算法 216
9.2.1 多傳感器信息融閤 222
9.3 反演測量模型的研究 223
9.3.1 反演測量模型 223
9.3.2 從正演模型采樣 224
9.3.3 誤差函數 225
9.3.4 實例與深度思考 226
9.4 大化後驗占用地圖構建 227
9.4.1 維持依賴實例 227
9.4.2 用正演模型進行占用柵格地圖構建 228
9.5 小結 231
9.6 文獻綜述 231
9.7 習題 232
10章 同時定位與地圖構建 235
10.1 引言 235
10.2 基於擴展卡爾曼濾波的SLAM 237
10.2.1 設定和假設 237
10.2.2 已知一緻性的SLAM問題 238
10.2.3 EKF SLAM的數學推導 241
10.3 未知一緻性的EKF SLAM 244
10.3.1 通用EKF SLAM算法 244
10.3.2 舉例 247
10.3.3 特徵選擇和地圖管理 250
10.4 小結 252
10.5 文獻綜述 253
10.6 習題 256
11章 GraphSLAM算法 258
11.1 引言 258
11.2 直覺描述 260
11.2.1 建立圖形 260
11.2.2 推論 262
11.3 具體的GraphSLAM算法 265
11.4 GraphSLAM算法的數學推導 270
11.4.1 全SLAM後驗 271
11.4.2 負對數後驗 272
11.4.3 泰勒錶達式 272
11.4.4 構建信息形式 273
11.4.5 濃縮信息錶 274
11.4.6 恢復機器人路徑 277
11.5 GraphSLAM算法的數據關聯 278
11.5.1 未知一緻性的GraphSLAM算法 279
11.5.2 一緻性測試的數學推理 281
11.6 效率評價 283
11.7 實驗應用 284
11.8 其他的優化技術 288
11.9 小結 290
11.10 文獻綜述 291
11.11 習題 293
12章 稀疏擴展信息濾波 294
12.1 引言 294
12.2 直觀描述 296
12.3 SEIF SLAM算法 298
12.4 SEIF的數學推導 301
12.4.1 運動更新 301
12.4.2 測量更新 304
12.5 稀疏化 304
12.5.1 一般思想 304
12.5.2 SEIF的稀疏化 306
12.5.3 稀疏化的數學推導 307
12.6 分期償還的近似地圖恢復 308
12.7 SEIF有多稀疏 310
12.8 增量數據關聯 313
12.8.1 計算增量數據關聯概率 313
12.8.2 實際考慮 315
12.9 分支定界數據關聯 318
12.9.1 遞歸搜索 318
12.9.2 計算任意的數據關聯概率 320
12.9.3 等價約束 320
12.10 實際考慮 322
12.11 多機器人SLAM 325
12.11.1 整閤地圖 326
12.11.2 地圖整閤的數學推導 328
12.11.3 建立一緻性 329
12.11.4 示例 329
12.12 小結 332
12.13 文獻綜述 333
12.14 習題 334
13章 FastSLAM算法 336
13.1 基本算法 337
13.2 因子分解SLAM後驗 338
13.2.1 因式分解的SLAM後驗的數學推導 339
13.3 具有已知數據關聯的FastSLAM算法 341
13.4 改進建議分布 346
13.4.1 通過采樣新位姿擴展路徑後驗 346
13.4.2 更新可觀察的特徵估計 348
13.4.3 計算重要性係數 349
13.5 未知數據關聯 351
13.6 地圖管理 352
13.7 FastSLAM算法 353
13.8 高效實現 358
13.9 基於特徵的地圖的 FastSLAM 360
13.9.1 經驗思考 360
13.9.2 閉環 363
13.10 基於柵格的FastSLAM算法 366
13.10.1 算法 366
13.10.2 經驗見解 366
13.11 小結 369
13.12 文獻綜述 371
13.13 習題 372
Ⅳ部分 規劃與控製
14章 馬爾可夫決策過程 374
14.1 目的 374
14.2 行動選擇的不確定性 376
14.3 值迭代 380
14.3.1 目標和報酬 380
14.3.2 為完全能觀測的情況尋找優控製策略 383
14.3.3 計算值函數 384
14.4 機器人控製的應用 387
14.5 小結 390
14.6 文獻綜述 391
14.7 習題 392
15章 部分能觀測馬爾可夫決策過程 394
15.1 動機 394
15.2 算例分析 395
15.2.1 建立 395
15.2.2 控製選擇 397
15.2.3 感知 398
15.2.4 預測 402
15.2.5 深度周期和修剪 404
15.3 有限環境POMDP算法 407
15.4 POMDP的數學推導 409
15.4.1 置信空間的值迭代 409
15.4.2 值函數錶示法 410
15.4.3 計算值函數 410
15.5 實際考慮 413
15.6 小結 416
15.7 文獻綜述 417
15.8 習題 419
16章 近似部分能觀測馬爾可夫決策過程技術 421
16.1 動機 421
16.2 QMDP
包郵 概率機器人 概率機器人基礎知識 定位 地圖構建 規劃與控製 機器人運動 機器人應用 書籍 下載 mobi epub pdf txt 電子書 格式
包郵 概率機器人 概率機器人基礎知識 定位 地圖構建 規劃與控製 機器人運動 機器人應用 書籍 下載 mobi pdf epub txt 電子書 格式 2025
包郵 概率機器人 概率機器人基礎知識 定位 地圖構建 規劃與控製 機器人運動 機器人應用 書籍 下載 mobi epub pdf 電子書包郵 概率機器人 概率機器人基礎知識 定位 地圖構建 規劃與控製 機器人運動 機器人應用 書籍 mobi epub pdf txt 電子書 格式下載 2025