代数(英文版.第2版) (美)Michael Artin|198897

代数(英文版.第2版) (美)Michael Artin|198897 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
美 Michael Artin 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-09

类似图书 点击查看全场最低价

图书介绍

店铺: 互动出版网图书专营店
出版社: 机械工业出版社
ISBN:9787111367017
商品编码:1247882370
丛书名: 华章数学原版精品系列
出版时间:2012-01-01
页数:543


相关图书





图书描述

 书名:  代数(英文版.第2版)|198897
 图书定价: 79元
 图书作者: (美)Michael Artin
 出版社:  机械工业出版社
 出版日期:  2012/1/1 0:00:00
 ISBN号: 9787111367017
 开本: 16开
 页数: 543
 版次: 2-1
 作者简介
Michael Artin 当代领袖型代数学家与代数几何学家之一,美国麻省理工学院数学系荣誉退休教授。1990年至1992年,曾担任美国数学学会主席。由于他在交换代数与非交换代数、环论以及现代代数几何学等方面做出的贡献,2002年获得美国数学学会颁发的Leroy P.Steele终身成就奖。Artin的主要贡献包括他的逼近定理、在解决沙法列维奇-泰特猜测中的工作以及为推广“概形”而创建的“代数空间”概念。
 内容简介
《代数(英文版.第2版)》由著名代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性算子、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容。本书对于提高数学理解能力,增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。
作者结合这20年来的教学经历及读者的反馈,对本版进行了全面更新,更强调对称性、线性群、二次数域和格等具体主题。本版的具体更新情况如下:
新增球面、乘积环和因式分解的计算方法等内容,并补充给出一些结论的证明,如交错群是简单的、柯西定理、分裂定理等。
修订了对对应定理、SU2 表示、正交关系等内容的讨论,并把线性变换和因子分解都拆分为两章来介绍。
新增大量习题,并用星号标注出具有挑战性的习题。
《代数(英文版.第2版)》在麻省理工学院、普林斯顿大学、哥伦比亚大学等著名学府得到了广泛采用,是代数学的经典教材之一。
 目录

《代数(英文版.第2版)》
Preface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Determinants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises
2 Groups
2.1 Laws of Composition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Integers.
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Product Groups
2.12 Quotient Groups
Exercises
3 Vector Spaces
3.1 Subspaces of Rn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 Direct Sums
3.7 Infinite-Dimensional Spaces
Exercises
4 Linear Operators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and Diagonal Forms
4.7 Jordan Form
Exercises
5 Applications of Linear Operators
5.1 Orthogonal Matrices and Rotations
5.2 Using Continuity
5.3 Systems of Differential Equations
5.4 The Matrix Exponential
Exercises
6 Symmetry
6.1 Symmetry of Plane Figures
6.2 Isometries
6.3 Isometries of the Plane
6.4 Finite Groups of Orthogonal Operators on the Plane
6.5 Discrete Groups of Isometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups of the Rotation Group
Exercises
7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 p-Groups
7.4 The Class Equation of the Icosahedral Group
7.5 Conjugation in the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups of Order 12
7.9 The Free Group
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises
8 Bilinear Forms
8.1 Bilinear Forms
8.2 Symmetric Forms
8.3 Hermitian Forms
8.4 Orthogonality
8.5 Euclidean Spaces and Hermitian Spaces
8.6 The Spectral Theorem
8.7 Conics and Quadrics
8.8 Skew-Symmetric Forms
8.9 Summary
Exercises
9 Linear Groups
9.1 The Classical Groups
9.2 Interlude: Spheres
9.3 The Special Unitary Group SU2
9.4 The Rotation Group S03
9.5 One-Parameter Groups
9.6 The Lie Algebra
9.7 Translation in a Group
9.8 Normal Subgroups of SL2
Exercises
10 Group Representations
10.1 Definitions
10.2 Irreducible Representations
10.3 Unitary Representations
10.4 Characters
10.5 One-Dimensional Characters
10.6 The Regular Representation
10.7 Schur's Lemma
10.8 Proof of the Orthogonality Relations
10.9 Representations of SU2
Exercises
11 Rings
11.1 Definition of a Ring
11.2 Polynomial Rings
11.3 Homomorphisms and Ideals
11.4 Quotient Rings
11.5 Adjoining Elements
11.6 Product Rings
11.7 Fractions
11.8 Maximal Ideals
11.9 Algebraic Geometry
Exercises
12 Factoring
12.1 Factoring Integers
12.2 Unique Factorization Domains
12.3 Gauss's Lemma
12.4 Factoring Integer Polynomials
12.5 Gauss Primes
Exercises
13 Quadratic Number Fields
13.1 Algebraic Integers
13.2 Factoring Algebraic Integers
13.3 Ideals in Z
13.4 Ideal Multiplication
13.5 Factoring Ideals
13.6 Prime Ideals and Prime Integers
13.7 Ideal Classes
13.8 Computing the Class Group
13.9 Real Quadratic Fields
13.10 About Lattices
Exercises
14 Linear Algebra in a Ring
14.1 Modules
14.2 Free Modules
14.3 Identities
14.4 Diagonalizing Integer Matrices
14.5 Generators and Relations
14.6 Noetherian Rings
14.7 Structure of Abelian Groups
14.8 Application to Linear Operators
14.9 Polynomial Rings in Several Variables
Exercises
15 Fields
15.1 Examples of Fields
15.2 Algebraic and Transcendental Elements
15.3 The Degree of a Field Extension
15.4 Finding the Irreducible Polynomial
15.5 Ruler and Compass Constructions
15.6 Adjoining Roots
15.7 Finite Fields
15.8 Primitive Elements
15.9 Function Fields
15.10 The Fundamental Theorem of Algebra
Exercises
16 Galois Theory
16.1 Symmetric Functions
16.2 The Discriminant
16.3 Splitting Fields
16.4 Isomorphisms of Field Extensions
16.5 Fixed Fields
16.6 Galois Extensions
16.7 The Main Theorem
16.8 Cubic Equations
16.9 Quartic Equations
16.10 Roots of Unity
16.11 Kummer Extensions
16.12 Quintic Equations
Exercises
APPENDIX
Background Material
A.1 About Proofs
A.2 The Integers
A.3 Zorn's Lemma
A.4 The Implicit Function Theorem Exercises
Bibliography
Notation
Index

代数(英文版.第2版) (美)Michael Artin|198897 下载 mobi epub pdf txt 电子书 格式

代数(英文版.第2版) (美)Michael Artin|198897 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

代数(英文版.第2版) (美)Michael Artin|198897 下载 mobi pdf epub txt 电子书 格式 2025

代数(英文版.第2版) (美)Michael Artin|198897 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

代数(英文版.第2版) (美)Michael Artin|198897 mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有