发表于2024-11-06
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,**卷为单变量情形,第二卷为多变量情形。
第二卷中译本分为两册出版.本书是第二卷**分册,包括前三章.**章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念.原书有练习解答,分别编入各分册.
译者(按内容顺序):邵土敏、周建莹、张锦炎(**章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。
读者对象为高等学校理工科师生与工程技术人员。
第二卷 第一分册
第一章 多元函数及其导数
1.1平面和空间的点和点集
1.2几个自变量的函数
1.3连续性
1.4函数的偏导数
1.5函数的全微分及其几何意义
1.6函数的函数(复合函数)与新自变量的引入
1.7多元函数的中值定理与泰勒定理
1.8依赖于参量的函数的积分
1.9微分与线积分
1.10线性微分型的可积性的基本定理
附录
A.1多维空间的聚点原理及其应用
A.2连续函数的基本性质
A.3点集论的基本概念
A.4齐次函数
第二章 向量、矩阵与线性变换
2.1向量的运算
2.2矩阵与线性变换
2.3行列式
2.4行列式的几何解释
2.5分析中的向量概念
第三章 微分学的发展和应用
3.1隐函数
3.2用隐函数形式表出的曲线与曲面
3.3函数组、变换与映射
3.4应用
3.5曲线族,曲面族,以及它们的包络
3.6交错微分型
3.7最大与最小
附录
A.1极值的充分条件
练习A.1
A.2临界点的个数与向量场的指数
练习A.2
A3平面曲线的奇点
练习A.3
A.4曲面的奇点
练习A.4
A.5流体运动的欧拉表示法与拉格朗日表示法之间的联系
练习A.5
A.6闭曲线的切线表示法与周长不等式
练习A.6
解答
第二卷 第二分册
微积分和数学分析引论 第二卷 第一分册,第二分册 下载 mobi pdf epub txt 电子书 格式 2024
微积分和数学分析引论 第二卷 第一分册,第二分册 下载 mobi epub pdf 电子书希望每一个人都能读一读外国经典教材,
评分经典数学教材,性价比很高。
评分这本书内容不错本想给5星,也适合自学。但里面有诸多印刷错误,目前还发现一些加减号错误,影响阅读感觉。严重怀疑科学出版社根本没有认真校对过
评分不可多得的好书
评分美国人写的教材,不错不错!
评分老公买的,说是基础数学
评分很好的书,复习一些数学知识,挑战机器学习的深度
评分第一册书皮坏了,第二次在京东买到质量不好的书
评分买回来开始看了,没看内容无法评价,书籍是32开本的,要是16开本就好了,那样显的书就薄些。?
微积分和数学分析引论 第二卷 第一分册,第二分册 mobi epub pdf txt 电子书 格式下载 2024