發表於2024-11-23
《概率機器人》對概率機器人學這一領域進行瞭全麵的介紹,是概率機器人學的一部經典著作,內容很全麵,也是移動機器人學科領域的必讀書籍。它是機器人學的一個重要分支,內容適用於每一位機器人領域的學生、研究者和技術人員,以及應用統計學與傳感器的非機器人領域的從業者。
為使機器人能夠應對環境、傳感器、執行機構、內部模型、近似算法等所帶來的不確定性,《概率機器人》緻力於用概率的方法明確地錶示不確定性,並研究機器人感知和機器人規劃與控製的不確定性,以降低機器人係統的不確定性,使機器人能 工作於應用環境中,完成定位、地圖構建、規劃與控製。
《概率機器人》對概率機器人學這一新興領域進行瞭全麵的介紹。概率機器人學依賴統計技術錶示信息和進行決策,以容納當今大多數機器人應用中必然存在的不確定性,是機器人學的一個分支。它依賴統計技術錶示信息和製定決策。這樣做,可以接納在當今大多數機器人應用中引起的不確定性。本書主要專注於算法,對於每種算法,均提供瞭四項內容:①僞碼示例;②完整的數學推導;③實驗結果;④算法優缺點的詳細討論。
《概率機器人》包括瞭基礎知識、定位、地圖構建、規劃與控製四大部分。本書共17章,每章的後都提供瞭練習題和動手實踐的項目。相信本書可以加深讀者對概率機器人學的認識。
Sebastian Thrun博士,計算機科學傢,美國斯坦福大學計算機科學係兼職研究教授,美國榖歌公司會士,入選德國國傢工程院和德國科學院,德國普朗剋奬獲得者。他曾任美國斯坦福大學計算機科學和電氣工程係全職教授、人工智能實驗室主任,開發過機器人導遊、機器人礦工等多個人工智能項目;曾任美國榖歌公司副總裁,是美國榖歌公司X實驗室創始人,從事榖歌無人駕駛汽車和榖歌眼鏡的研發。現為美國Udacity公司的共同創始人兼CEO,是大型網絡開放課程 (Massive Open On-line Courses,MOOC)的積極倡導者和創立人。他把統計學引入機器人學,開拓瞭概率機器人學領域,從此概率技術成為機器人學的主流技術,並在無數商業領域得到廣泛應用。
Wolfram Burgard博士,德國弗萊堡大學計算機科學係全職教授,自主智能係統實驗室主任,入選歐洲協調委員會人工智能學會會士和美國人工智能學會會士,是德國萊布尼茨奬獲得者,研究領域為人工智能和移動機器人。
Dieter Fox博士,美國華盛頓大學計算機科學與工程係教授,機器人學和狀態估計實驗室主任,入選IEEE會士和美國人工智能學會會士,曾任美國英特爾研究實驗室主任,主要研究人工智能、機器人學和概率狀態估計。
譯者序
原書前言
緻謝
第Ⅰ部分 基礎知識
第1章 緒論 1
1.1 機器人學中的不確定性 1
1.2 概率機器人學 2
1.3 啓示 6
1.4 本書導航 7
1.5 概率機器人課程教學 7
1.6 文獻綜述 8
第2章 遞歸狀態估計 10
2.1 引言 10
2.2 概率的基本概念 10
2.3 機器人環境交互 14
2.3.1 狀態 15
2.3.2 環境交互 16
2.3.3 概率生成法則 18
2.3.4 置信分布 19
2.4 貝葉斯濾波 20
2.4.1 貝葉斯濾波算法 20
2.4.2 實例 21
2.4.3 貝葉斯濾波的數學推導 23
2.4.4 馬爾可夫假設 25
2.5 錶示法和計算 25
2.6 小結 26
2.7 文獻綜述 26
2.8 習題 27
第3章 高斯濾波 29
3.1 引言 29
3.2 卡爾曼濾波 30
3.2.1 綫性高斯係統 30
3.2.2 卡爾曼濾波算法 31
3.2.3 例證 32
3.2.4 卡爾曼濾波的數學推導 33
3.3 擴展卡爾曼濾波 40
3.3.1 為什麼要綫性化 40
3.3.2 通過泰勒展開的綫性化 42
3.3.3 擴展卡爾曼濾波算法 44
3.3.4 擴展卡爾曼濾波的數學推導 44
3.3.5 實際考慮 46
3.4 無跡卡爾曼濾波 49
3.4.1 通過無跡變換實現綫性化 49
3.4.2 無跡卡爾曼濾波算法 50
3.5 信息濾波 54
3.5.1 正則參數 54
3.5.2 信息濾波算法 55
3.5.3 信息濾波的數學推導 56
3.5.4 擴展信息濾波算法 57
3.5.5 擴展信息濾波的數學推導 58
3.5.6 實際考慮 59
3.6 小結 60
3.7 文獻綜述 61
3.8 習題 62
第4章 非參數濾波 64
4.1 直方圖濾波 64
4.1.1 離散貝葉斯濾波算法 65
4.1.2 連續狀態 65
4.1.3 直方圖近似的數學推導 67
4.1.4 分解技術 69
4.2 靜態二值貝葉斯濾波 70
4.3 粒子濾波 72
4.3.1基本算法 72
4.3.2 重要性采樣 75
4.3.3 粒子濾波的數學推導 77
4.3.4 粒子濾波的實際考慮和特性 79
4.4 小結 85
4.5 文獻綜述 85
4.6 習題 86
第5章 機器人運動 88
5.1 引言 88
5.2 預備工作 89
5.2.1 運動學構型 89
5.2.2 概率運動學 89
5.3 速度運動模型 90
5.3.1 閉式計算 91
5.3.2 采樣算法 92
5.3.3 速度運動模型的數學推導 94
5.4 裏程計運動模型 99
5.4.1 閉式計算 100
5.4.2 采樣算法 102
5.4.3 裏程計運動模型的數學推導 104
5.5 運動和地圖 105
5.6 小結 108
5.7 文獻綜述 109
5.8 習題 110
第6章 機器人感知 112
6.1 引言 112
6.2 地圖 114
6.3 測距儀的波束模型 115
6.3.1 基本測量算法 115
6.3.2 調節固有模型參數 119
6.3.3 波束模型的數學推導 121
6.3.4 實際考慮 126
6.3.5 波束模型的局限 127
6.4 測距儀的似然域 127
6.4.1 基本算法 127
6.4.2 擴展 130
6.5 基於相關性的測量模型 131
6.6 基於特徵的測量模型 133
6.6.1 特徵提取 133
6.6.2 地標的測量 133
6.6.3 已知相關性的傳感器模型 134
6.6.4 采樣位姿 135
6.6.5 進一步的考慮 137
6.7 實際考慮 137
6.8 小結 138
6.9 文獻綜述 139
6.10 習題 139
第Ⅱ部分 定 位
第7章 移動機器人定位:馬爾可夫與高斯 142
7.1 定位問題的分類 144
7.2 馬爾可夫定位 146
7.3 馬爾可夫定位圖例 147
7.4 擴展卡爾曼濾波定位 149
7.4.1 圖例 149
7.4.2 擴展卡爾曼濾波定位算法 151
7.4.3 擴展卡爾曼濾波定位的數學推導 151
7.4.4 物理實現 157
7.5 估計一緻性 161
7.5.1 未知一緻性的擴展卡爾曼濾波定位 161
7.5.2 極大似然數據關聯的數學推導 162
7.6 多假設跟蹤 164
7.7 無跡卡爾曼濾波定位 165
7.7.1 無跡卡爾曼濾波定位的數學推導 165
7.7.2 圖例 168
7.8 實際考慮 172
7.9 小結 174
7.10 文獻綜述 175
7.11 習題 176
第8章 移動機器人定位:柵格與濛特卡羅 179
8.1 介紹 179
8.2 柵格定位 179
8.2.1 基本算法 179
8.2.2 柵格分辨率 180
8.2.3 計算開銷 184
8.2.4 圖例 184
8.3 濛特卡羅定位 189
8.3.1 圖例 189
8.3.2 濛特卡羅定位算法 191
8.3.3 物理實現 191
8.3.4 濛特卡羅定位特性 194
8.3.5 隨機粒子濛特卡羅定位:失效恢復 194
8.3.6 更改建議分布 198
8.3.7 庫爾貝剋-萊布勒散度采樣:調節樣本集閤大小 199
8.4 動態環境下的定位 203
8.5 實際考慮 208
8.6 小結 209
8.7 文獻綜述 209
8.8習題 211
第Ⅲ部分 地圖構建
第9章 占用柵格地圖構建 213
9.1 引言 213
9.2 占用柵格地圖構建算法 216
9.2.1 多傳感器信息融閤 222
9.3 反演測量模型的研究 223
9.3.1 反演測量模型 223
9.3.2 從正演模型采樣 224
9.3.3 誤差函數 225
9.3.4 實例與深度思考 226
9.4 最大化後驗占用地圖構建 227
9.4.1 維持依賴實例 227
9.4.2 用正演模型進行占用柵格地圖構建 228
9.5 小結 231
9.6 文獻綜述 231
9.7 習題 232
第10章 同時定位與地圖構建 235
10.1 引言 235
10.2 基於擴展卡爾曼濾波的SLAM 237
10.2.1 設定和假設 237
10.2.2 已知一緻性的SLAM問題 238
10.2.3 EKF SLAM的數學推導 241
10.3 未知一緻性的EKF SLAM 244
10.3.1 通用EKF SLAM算法 244
10.3.2 舉例 247
10.3.3 特徵選擇和地圖管理 250
10.4 小結 252
10.5 文獻綜述 253
10.6 習題 256
第11章 GraphSLAM算法 258
11.1 引言 258
11.2 直覺描述 260
11.2.1 建立圖形 260
11.2.2 推論 262
11.3 具體的GraphSLAM算法 265
11.4 GraphSLAM算法的數學推導 270
11.4.1 全SLAM後驗 271
11.4.2 負對數後驗 272
11.4.3 泰勒錶達式 272
11.4.4 構建信息形式 273
11.4.5 濃縮信息錶 274
11.4.6 恢復機器人路徑 277
11.5 GraphSLAM算法的數據關聯 278
11.5.1 未知一緻性的GraphSLAM算法 279
11.5.2 一緻性測試的數學推理 281
11.6 效率評價 283
11.7 實驗應用 284
11.8 其他的優化技術 288
11.9 小結 290
11.10 文獻綜述 291
11.11 習題 293
第12章 稀疏擴展信息濾波 294
12.1 引言 294
12.2 直觀描述 296
12.3 SEIF SLAM算法 298
12.4 SEIF的數學推導 301
12.4.1 運動更新 301
12.4.2 測量更新 304
12.5 稀疏化 304
12.5.1 一般思想 304
12.5.2 SEIF的稀疏化 306
12.5.3 稀疏化的數學推導 307
12.6 分期償還的近似地圖恢復 308
12.7 SEIF有多稀疏 310
12.8 增量數據關聯 313
12.8.1 計算增量數據關聯概率 313
12.8.2 實際考慮 315
12.9 分支定界數據關聯 318
12.9.1 遞歸搜索 318
12.9.2 計算任意的數據關聯概率 320
12.9.3 等價約束 320
12.10 實際考慮 322
12.11 多機器人SLAM 325
12.11.1 整閤地圖 326
12.11.2 地圖整閤的數學推導 328
12.11.3 建立一緻性 329
12.11.4 示例 329
12.12 小結 332
12.13 文獻綜述 333
12.14 習題 334
第13章 FastSLAM算法 336
13.1 基本算法 337
13.2 因子分解SLAM後驗 338
13.2.1 因式分解的SLAM後驗的數學推導 339
13.3 具有已知數據關聯的FastSLAM算法 341
13.4 改進建議分布 346
13.4.1 通過采樣新位姿擴展路徑後驗 346
13.4.2 更新可觀察的特徵估計 348
13.4.3 計算重要性係數 349
13.5 未知數據關聯 351
13.6 地圖管理 352
13.7 FastSLAM算法 353
13.8 高效實現 358
13.9 基於特徵的地圖的 FastSLAM 360
13.9.1 經驗思考 360
13.9.2 閉環 363
13.10 基於柵格的FastSLAM算法 366
13.10.1 算法 366
13.10.2 經驗見解 366
13.11 小結 369
13.12 文獻綜述 371
13.13 習題 372
第Ⅳ部分 規劃與控製
第14章 馬爾可夫決策過程 374
14.1 目的 374
14.2 行動選擇的不確定性 376
14.3 值迭代 380
14.3.1 目標和報酬 380
14.3.2 為完全能觀測的情況尋找最優控製策略 383
14.3.3 計算值函數 384
14.4 機器人控製的應用 387
14.5 小結 390
14.6 文獻綜述 391
14.7 習題 392
第15章 部分能觀測馬爾可夫決策過程 394
15.1 動機 394
15.2 算例分析 395
15.2.1 建立 395
15.2.2 控製選擇 397
15.2.3 感知 398
15.2.4 預測 402
15.2.5 深度周期和修剪 404
15.3 有限環境POMDP算法 407
15.4 POMDP的數學推導 409
15.4.1 置信空間的值迭代 409
15.4.2 值函數錶示法 410
15.4.3 計算值函數 410
15.5 實際考慮 413
15.6 小結 416
15.7 文獻綜述 417
15.8 習題 419
第16章 近似部分能觀測馬爾可夫決策過程技術 421
16.1 動機 421
16.2 QMDP 422
16.3 AMDP 423
16.3.1 增廣的狀態空間 423
16.3.2 AMDP算法 424
16.3.3 AMDP的數學推導 426
16.3.4 移動機器人導航應用 427
16.4 MC-POMDP 430
16.4.1 使用粒子集 430
16.4.2 MC-POMDP算法 431
16.4.3 MC-POMDP的數學推導 433
16.4.4 實際考慮 434
16.5 小結 435
16.6 文獻綜述 436
16.7 習題 436
第17章 探測 438
17.1 介紹 438
17.2 基本探測算法 439
17.2.1 信息增益 439
17.2.2 貪婪技術 440
17.2.3 濛特卡羅探測 441
17.2.4 多步技術 442
17.3 主動定位 442
17.4 為獲得占用柵格地圖的探測 447
17.4.1 計算信息增益 447
17.4.2 傳播增益 450
17.4.3 推廣到多機器人係統 452
17.5 SLAM探測 457
17.5.1 SLAM熵分解 457
17.5.2 FastSLAM探測 458
17.5.3 實驗描述 460
17.6 小結 462
17.7 文獻綜述 463
17.8 習題 466
參考文獻 468
原書前言
本書對概率機器人學這一新興領域進行瞭全麵的介紹。概率機器人學與感知和控製機器人有關,是機器人學的一個分支。它依賴統計技術去錶示信息和製定決策。這樣做,可以接納在當今大多數機器人應用中引起的不確定性。近幾年,概率技術已經成為機器人算法設計的主導範式之一。本書第一次將這一領域的一些主要技術進行瞭全麵的介紹。
本書專注於算法。本書中的所有算法都是基於一個單一的總體數學基礎:貝葉斯理論及其推論———貝葉斯濾波。這種統一的數學體係是概率算法的核心。
在寫這本書時,我們已經盡可能保持技術細節的完整。每章描寫一個或多個主要算法。對每一種算法,我們提供瞭以下四項內容:①僞碼的示例實現;②從基本定理開始的完整的數學推導(使每個算法的不同假設都很清晰);③實驗結果(有助於進一步理解本書中的算法);④本書中每一個算法優缺點的詳細討論(從一個專業人員的視角)。對每一個不同的算法都進行這樣的開發,是一件辛苦的工作。即使跳過數學推導部分(讀者常會這樣),對於普通讀者來說,理解這本書有時還是有睏難的。我們希望細心的讀者能對本書有深入的理解,因為本 書並不是就某一主題進行膚淺的和非數學的闡述。
本書是我們(包括幾位作者、我們的學生以及同行)在該領域數十年的研究成果。我們從1999年開始寫這本書,本打算用幾個月的時間完成這本書。但是,5年過去瞭,初稿中的內容幾乎沒有被保留下來的。通過這本書的寫作,我們學到的信息和決策理論遠比我們當初以為的要多得多。並且,我們學到的大量理論也已經在本書中進行瞭闡述。
本書是寫給學生、研究者和機器人技術從業者的。我們相信,任何人要構建機器人都要開發軟件。因此,本書的內容適用於每一位機器人專傢。同時,應用統計學專傢及與客觀世界的傳感器數據有關的非機器人學領域的人們,也會對本書感興趣。為使本書廣泛服務於具有不同技術背景的讀者,我們力圖做到使本書盡可能地自成體係。如果讀者具有一些綫性代數、概率論和數理統計的基礎知識對理解本書內容是非常有幫助的,不過我們還是介紹瞭一些概率的基本定律的入門知識,並且本書全文避免使用太過先進的數學技術。
本書也可以用於教學。每一章都提供瞭一些習題和動手實踐的項目。將本書用於
概率機器人 [Probabilistic robotics] 下載 mobi epub pdf txt 電子書 格式
概率機器人 [Probabilistic robotics] 下載 mobi pdf epub txt 電子書 格式 2024
概率機器人 [Probabilistic robotics] 下載 mobi epub pdf 電子書這本書的包裝還行,紙質太薄,可以看到反麵的字,感覺一般
評分不知道怎麼樣,彆人買的東西。
評分好看
評分物流快,服務好,書本質量很好。值得購買!京東的物流真的好快!
評分有點貴,有點薄,內容不會高數好像看不懂啊,為什麼我要買。。。好好補數學
評分挺不錯的一本書
評分物流快,服務好,書本質量很好。值得購買!京東的物流真的好快!
評分說實話,翻譯的太口語化瞭。印刷感覺也有點像盜版的
評分書不錯,就是看不懂而已
概率機器人 [Probabilistic robotics] mobi epub pdf txt 電子書 格式下載 2024