大数据基础编程、实验和案例教程

大数据基础编程、实验和案例教程 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
林子雨 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

图书介绍

出版社: 清华大学出版社
ISBN:9787302472094
版次:1
商品编码:12143471
包装:平装
开本:16开
出版时间:2017-07-01
用纸:胶版纸
页数:368
字数:568000
正文语种:中文


相关图书





图书描述

编辑推荐

步步引导,循序渐进,详尽的安装指南为顺利搭建大数据实验环境铺平道路
? 深入浅出,去粗取精,丰富的代码实例帮助快速掌握大数据基础编程方法
? 精心设计,巧妙融合,五套大数据实验题目促进理论与编程知识的消化和吸收
? 结合理论,联系实际,大数据课程综合实验案例精彩呈现大数据分析全流程

内容简介

本书以大数据分析全流程为主线,介绍了数据采集、数据存储与管理、数据处理与分析、数据可视化等环节典型软件的安装、使用和基础编程方法。本书内容涵盖操作系统(Linux和Windows)、开发工具(Eclipse)以及大数据相关技术、软件(Sqoop、Kafka、Flume、Hadoop、HDFS、MapReduce、HBase、Hive、Spark、MySQL、MongoDB、Redis、R、Easel.ly、D3、魔镜、ECharts、Tableau)等。同时,本书还提供了丰富的课程实验和综合案例,以及大量免费的在线教学资源,可以较好地满足高等院校大数据教学实际需求。
本书是《大数据技术原理与应用——概念、存储、处理、分析与应用》的“姊妹篇”,可以作为高等院校计算机、信息管理等相关专业的大数据课程辅助教材,用于指导大数据编程实践;也可供相关技术人员参考。

作者简介

林子雨(1978-),男,博士,厦门大学计算机科学系助理教授,厦门大学云计算与大数据研究中心创始成员,厦门大学数据库实验室负责人,中国计算机学会数据库专委会委员,中国计算机学会信息系统专委会委员。于2001年获得福州大学水利水电专业学士学位,2005年获得厦门大学计算机专业硕士学位,2009年获得北京大学计算机专业博士学位。中国高校*“数字教师”提出者和建设者(http://www.cs.xmu.edu.cn/linziyu),2009年至今,“数字教师”大平台累计向网络免费发布超过100万字高价值的教学和科研资料,累计网络访问量超过100万次。
主要研究方向为数据库、数据仓库、数据挖掘、大数据和云计算,发表期刊和会议学术论文多篇,并作为课题组负责人承担了国家自然科学基金和福建省自然科学基金项目。曾作为志愿者翻译了Google Spanner、BigTable和《Architecture of a Database System》等大量英文学术资料,与广大网友分享,深受欢迎。2013年在厦门大学开设大数据课程,并因在教学领域的突出贡献和学生的认可,成为2013年度厦门大学教学类奖教金获得者。

目录

第1章大数据技术概述/1
1.1大数据时代/1
1.2大数据关键技术/2
1.3大数据软件/3
1.3.1Hadoop/4
1.3.2Spark/5
1.3.3NoSQL数据库/5
1.3.4数据可视化/6
1.4内容安排/7
1.5在线资源/8
1.5.1在线资源一览表/9
1.5.2下载专区/9
1.5.3在线视频/10
1.5.4拓展阅读/11
1.5.5大数据课程公共服务平台/11
1.6本章小结/12第2章Linux系统的安装和使用/13
2.1Linux系统简介/13
2.2Linux系统安装/13
2.2.1下载安装文件/14
2.2.2Linux系统的安装方式/14
2.2.3安装Linux虚拟机/15
2.2.4生成Linux虚拟机镜像文件/36
2.3Linux系统及相关软件的基本使用方法/38
2.3.1Shell/38
2.3.2root用户/38
2.3.3创建普通用户/38〖2〗〖4〗大数据基础编程、实验和案例教程目录〖3〗2.3.4sudo命令/39
2.3.5常用的Linux系统命令/40
2.3.6文件解压缩/40
2.3.7常用的目录/41
2.3.8目录的权限/41
2.3.9更新APT/41
2.3.10切换中英文输入法/43
2.3.11vim编辑器的使用方法/43
2.3.12在Windows系统中使用SSH方式登录Linux系统/44
2.3.13在Linux中安装Eclipse/48
2.3.14其他使用技巧/49
2.4关于本书内容的一些约定/49
2.5本章小结/50第3章Hadoop的安装和使用/51
3.1Hadoop简介/51
3.2安装Hadoop前的准备工作/52
3.2.1创建hadoop用户/52
3.2.2更新APT/52
3.2.3安装SSH/52
3.2.4安装Java环境/53
3.3安装Hadoop/55
3.3.1下载安装文件/55
3.3.2单机模式配置/56
3.3.3伪分布式模式配置/57
3.3.4分布式模式配置/66
3.3.5使用Docker搭建Hadoop分布式集群/75
3.4本章小结/87第4章HDFS操作方法和基础编程/88
4.1HDFS操作常用Shell命令/88
4.1.1查看命令使用方法/88
4.1.2HDFS目录操作/90
4.2利用HDFS的Web管理界面/92
4.3HDFS编程实践/92
4.3.1在Eclipse中创建项目/93
4.3.2为项目添加需要用到的JAR包/94
4.3.3编写Java应用程序/96
4.3.4编译运行程序/98
4.3.5应用程序的部署/100
4.4本章小结/102第5章HBase的安装和基础编程/103
5.1安装HBase/103
5.1.1下载安装文件/103
5.1.2配置环境变量/104
5.1.3添加用户权限/104
5.1.4查看HBase版本信息/104
5.2HBase的配置/105
5.2.1单机模式配置/105
5.2.2伪分布式配置/107
5.3HBase常用Shell命令/109
5.3.1在HBase中创建表/109
5.3.2添加数据/110
5.3.3查看数据/110
5.3.4删除数据/111
5.3.5删除表/112
5.3.6查询历史数据/112
5.3.7退出HBase数据库/112
5.4HBase编程实践/113
5.4.1在Eclipse中创建项目/113
5.4.2为项目添加需要用到的JAR包/116
5.4.3编写Java应用程序/117
5.4.4编译运行程序/123
5.4.5应用程序的部署/124
5.5本章小结/124第6章典型NoSQL数据库的安装和使用/125
6.1Redis安装和使用/125
6.1.1Redis简介/125
6.1.2安装Redis/125
6.1.3Redis实例演示/127
6.2MongoDB的安装和使用/128
6.2.1MongDB简介/129
6.2.2安装MongoDB/129
6.2.3使用Shell命令操作MongoDB/130
6.2.4Java API编程实例/136
6.3本章小结/139第7章MapReduce基础编程/140
7.1词频统计任务要求/140
7.2MapReduce程序编写方法/141
7.2.1编写Map处理逻辑/141
7.2.2编写Reduce处理逻辑/141
7.2.3编写main方法/142
7.2.4完整的词频统计程序/143
7.3编译打包程序/144
7.3.1使用命令行编译打包词频统计程序/145
7.3.2使用Eclipse编译运行词频统计程序/145
7.4运行程序/154
7.5本章小结/156第8章数据仓库Hive的安装和使用/157
8.1Hive的安装/157
8.1.1下载安装文件/157
8.1.2配置环境变量/158
8.1.3修改配置文件/158
8.1.4安装并配置MySQL/159
8.2Hive的数据类型/161
8.3Hive基本操作/162
8.3.1创建数据库、表、视图/162
8.3.2删除数据库、表、视图/163
8.3.3修改数据库、表、视图/164
8.3.4查看数据库、表、视图/165
8.3.5描述数据库、表、视图/165
8.3.6向表中装载数据/166
8.3.7查询表中数据/166
8.3.8向表中插入数据或从表中导出数据/166
8.4Hive应用实例: WordCount/167
8.5Hive编程的优势/167
8.6本章小结/168第9章Spark的安装和基础编程/169
9.1基础环境/169
9.2安装Spark/169
9.2.1下载安装文件/169
9.2.2配置相关文件/170
9.3使用 Spark Shell编写代码/171
9.3.1启动Spark Shell/171
9.3.2读取文件/172
9.3.3编写词频统计程序/174
9.4编写Spark独立应用程序/174
9.4.1用Scala语言编写Spark独立应用程序/175
9.4.2用Java语言编写Spark独立应用程序/178
9.5本章小结/182第10章典型的可视化工具的使用方法/183
10.1Easel.ly信息图制作方法/183
10.1.1信息图/183
10.1.2信息图制作基本步骤/183
10.2D3可视化库的使用方法/186
10.2.1D3可视化库的安装/187
10.2.2基本操作/187
10.3可视化工具Tableau使用方法/194
10.3.1安装Tableau/195
10.3.2界面功能介绍/195
10.3.3Tableau简单操作/197
10.4使用“魔镜”制作图表/202
10.4.1“魔镜”简介/202
10.4.2简单制作实例/202
10.5使用ECharts图表制作/206
10.5.1ECharts简介/206
10.5.2ECharts图表制作方法/206
10.5.3两个实例/210
10.6本章小结/217第11章数据采集工具的安装和使用/218
11.1Flume/218
11.1.1安装Flume/218
11.1.2两个实例/220
11.2Kafka/225
11.2.1Kafka相关概念/225
11.2.2安装Kafka/225
11.2.3一个实例/225
11.3Sqoop/227
11.3.1下载安装文件/227
11.3.2修改配置文件/228
11.3.3配置环境变量/228
11.3.4添加MySQL驱动程序/228
11.3.5测试与MySQL的连接/229
11.4实例: 编写Spark程序使用Kafka数据源/230
11.4.1Kafka准备工作/230
11.4.2Spark准备工作/232
11.4.3编写Spark程序使用Kafka数据源/234
11.5本章小结/239第12章大数据课程综合实验案例/241
12.1案例简介/241
12.1.1案例目的/241
12.1.2适用对象/241
12.1.3时间安排/241
12.1.4预备知识/241
12.1.5硬件要求/242
12.1.6软件工具/242
12.1.7数据集/242
12.1.8案例任务/242
12.2实验环境搭建/243
12.3实验步骤概述/244
12.4本地数据集上传到数据仓库Hive/245
12.4.1实验数据集的下载/245
12.4.2数据集的预处理/246
12.4.3导入数据库/249
12.5Hive数据分析/253
12.5.1简单查询分析/253
12.5.2查询条数统计分析/255
12.5.3关键字条件查询分析/256
12.5.4根据用户行为分析/258
12.5.5用户实时查询分析/259
12.6Hive、MySQL、HBase数据互导/260
12.6.1Hive预操作/260
12.6.2使用Sqoop将数据从Hive导入MySQL/261
12.6.3使用Sqoop将数据从MySQL导入HBase/265
12.6.4使用HBase Java API把数据从本地导入到HBase中/269
12.7利用R进行数据可视化分析/275
12.7.1安装R/275
12.7.2安装依赖库/277
12.7.3可视化分析/278
12.8本章小结/283第13章实验/284
13.1实验一: 熟悉常用的Linux操作和Hadoop操作/284
13.1.1实验目的/284
13.1.2实验平台/284
13.1.3实验步骤/284
13.1.4实验报告/286
13.2实验二: 熟悉常用的HDFS操作/286
13.2.1实验目的/286
13.2.2实验平台/286
13.2.3实验步骤/287
13.2.4实验报告/287
13.3实验三: 熟悉常用的HBase操作/288
13.3.1实验目的/288
13.3.2实验平台/288
13.3.3实验步骤/288
13.3.4实验报告/290
13.4实验四: NoSQL和关系数据库的操作比较/290
13.4.1实验目的/290
13.4.2实验平台/290
13.4.3实验步骤/290
13.4.4实验报告/293
13.5实验五: MapReduce初级编程实践/294
13.5.1实验目的/294
13.5.2实验平台/294
13.5.3实验步骤/294
13.5.4实验报告/297附录A大数据课程实验答案/298
A.1实验一: 熟悉常用的Linux操作和Hadoop操作/298
A.1.1实验目的/298
A.1.2实验平台/298
A.1.3实验步骤/298
A.2实验二: 熟悉常用的HDFS操作/303
A.2.1实验目的/303
A.2.2实验平台/303
A.2.3实验步骤/303
A.3实验三: 熟悉常用的HBase操作/323
A.3.1实验目的/323
A.3.2实验平台/323
A.3.3实验步骤/323
A.4实验四: NoSQL和关系数据库的操作比较/331
A.4.1实验目的/331
A.4.2实验平台/331
A.4.3实验步骤/332
A.5实验五: MapReduce初级编程实践/349
A.5.1实验目的/349
A.5.2实验平台/349
A.5.3实验步骤/350附录BLinux系统中的MySQL安装及常用操作/360
B.1安装MySQL/360
B.2MySQL常用操作/363参考文献/367

精彩书摘

第3章Hadoop的安装和使用
Hadoop是一个开源的、可运行于大规模集群上的分布式计算平台,它主要包含分布式并行编程模型MapReduce和分布式文件系统HDFS等功能,已经在业内得到广泛的应用。借助于Hadoop,程序员可以轻松地编写分布式并行程序,将其运行于计算机集群上,完成海量数据的存储与处理分析。
本章首先简要介绍Hadoop的发展情况;然后,阐述安装Hadoop之前的一些必要准备工作;最后,介绍安装Hadoop的具体方法,包括单机模式、伪分布式模式、分布式模式以及使用Docker搭建Hadoop集群。
3.1Hadoop简介
Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构。Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中。Hadoop的核心是分布式文件系统(Hadoop Distributed File System,HDFS)和MapReduce。
Hadoop被公认为行业大数据标准开源软件,在分布式环境下提供了海量数据的处理能力。几乎所有主流厂商都围绕Hadoop提供开发工具、开源软件、商业化工具和技术服务,如谷歌、微软、思科、淘宝等,都支持Hadoop。
Apache Hadoop版本分为两代: 第一代Hadoop称为Hadoop 1.0;第二代Hadoop称为Hadoop 2.0。第一代Hadoop包含0.20.x、0.21.x和0.22.x三大版本,其中,0.20.x最后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x则增加了HDFS HA等重要的新特性。第二代Hadoop包含0.23.x和2.x两大版本,它们完全不同于Hadoop 1.0,是一套全新的架构,均包含HDFS Federation和YARN(Yet Another Resource Negotiator)两个组件。本书采用Hadoop 2.7.1版本。
除了免费开源的Apache Hadoop以外,还有一些商业公司推出的Hadoop发行版。2008年,Cloudera成为第一个Hadoop商业化公司,并在2009年推出第一个Hadoop发行版。此后,很多大公司也加入了做Hadoop产品化的行列,如MapR、Hortonworks、星环等。一般而言,商业化公司推出的Hadoop发行版,也是以Apache Hadoop为基础,但是,前者比后者具有更好的易用性、更多的功能和更高的性能。〖2〗〖4〗大数据基础编程、实验和案例教程第3章Hadoop的安装和使用〖3〗3.2安装Hadoop前的准备工作
本节介绍安装Hadoop之前的一些准备工作,包括创建hadoop用户、更新APT、安装SSH和安装Java环境等。
3.2.1创建hadoop用户
本书全部采用hadoop用户登录Linux系统,并为hadoop用户增加了管理员权限。在第2章中已经介绍了hadoop用户创建和增加权限的方法,一定要按照该方法创建hadoop用户,并且使用hadoop用户登录Linux系统,然后再开始下面的学习内容。
3.2.2更新APT
第2章介绍了APT软件作用和更新方法,为了确保Hadoop安装过程顺利进行,建议按照第2章介绍的方法,用hadoop用户登录Linux系统后打开一个终端,执行下面命令更新APT软件:$ sudo apt-get update
3.2.3安装SSH
SSH是 Secure Shell 的缩写,是建立在应用层和传输层基础上的安全协议。SSH 是目前较可靠、专为远程登录会话和其他网络服务提供安全性的协议。利用SSH协议可以有效防止远程管理过程中的信息泄露问题。SSH最初是UNIX系统上的一个程序,后来又迅速扩展到其他操作平台。SSH是由客户端和服务端的软件组成,服务端是一个守护进程,它在后台运行并响应来自客户端的连接请求,客户端包含ssh程序以及像scp(远程复制)、slogin(远程登录)、sftp(安全文件传输)等其他的应用程序。
为什么在安装Hadoop之前要配置SSH呢?这是因为,Hadoop名称节点(NameNode)需要启动集群中所有机器的Hadoop守护进程,这个过程需要通过SSH登录来实现。Hadoop并没有提供SSH输入密码登录的形式,因此,为了能够顺利登录集群中的每台机器,需要将所有机器配置为“名称节点可以无密码登录它们”。
Ubuntu默认已安装了SSH客户端,因此,这里还需要安装SSH服务端,在Linux的终端中执行以下命 大数据基础编程、实验和案例教程 下载 mobi epub pdf txt 电子书 格式

大数据基础编程、实验和案例教程 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

大数据基础编程、实验和案例教程 下载 mobi pdf epub txt 电子书 格式 2025

大数据基础编程、实验和案例教程 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

很新 并且指导详细 很适合新入门的人

评分

书不错,很详细,适合初学

评分

正版.................

评分

正版书籍,质量很不错,送货速度快

评分

此用户未填写评价内容

评分

图书不错,值得推荐,关键还是在于看!

评分

可以

评分

回头看看 书籍基本都是京东买的 还是因为快吧

评分

挺好,挺不错,京东的活动就是好?

类似图书 点击查看全场最低价

大数据基础编程、实验和案例教程 mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有