單復變函數論(第三版 英文版) [Function Theory of One Complex Variable]

單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[美] 羅伯特·格林(Robert E.Greene) 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-24

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 高等教育齣版社
ISBN:9787040469073
版次:1
商品編碼:12118836
包裝:精裝
叢書名: 美國數學會經典影印係列
外文名稱:Function Theory of One Complex Variable
開本:16開
齣版時間:2017-01-01
用紙:膠版紙
頁數:504
字數:710000##


相關圖書





圖書描述

內容簡介

  復分析是數學*核心的學科之一,不但自身引人入勝、豐富多彩,而且在多種其他數學學科(純數學和應用數學)中都非常有用。《單復變函數論(第三版 英文版)》的與眾不同之處在於它從多變量實微積分中直接發展齣復變量。每一個新概念引進時,它總對應瞭實分析和微積分中相應的概念,《單復變函數論(第三版 英文版)》配有豐富的例題和習題來印證此點。
  作者有條不紊地將分析從拓撲中分離齣來,從柯西定理的證明中可見一斑。《單復變函數論(第三版 英文版)》分幾章討論專題,如對特殊函數的完整處理、素數定理和Bergman核。作者還處理瞭Hp空間,以及共形映射邊界光滑性的Painleve定理。
  《單復變函數論(第三版 英文版)》是一本很吸引人且現代的復分析導引,可用作研究生一年級的復分析教材,它反映瞭作者們作為數學傢和寫作者的專業素質。

內頁插圖

目錄

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Acknowledgments

Chapter 1. Fundamental Concepts
1.1. Elementary Properties of the Complex Numbers
1.2. Further Properties of the Complex Numbers
1.3. Complex Polynomials
1.4. Holomorphic Functions, the Cauchy-Riemann Equations, and Harmonic Functions
1.5. Real and Holomorphic Antiderivatives
Exercises

Chapter 2. Complex Line Integrals
2.1. Real and Complex Line Integrals
2.2. Complex Differentiability and Conformality
2.3. Antiderivatives Revisited
2.4. The Cauchy Integral Formula and the Cauchy Integral Theorem
2.5. The Cauchy Integral Formula: Some Examples
2.6. An Introduction to the Cauchy Integral Theorem and the Cauchy Integral Formula for More General Curves
Exercises

Chapter 3. Applications of the Cauchy Integral
3.1. Differentiability Properties of Holomorphic Functions
3.2. Complex Power Series
3.3. The Power Series Expansion for a Holomorphic Function
3.4. The Cauchy Estimates and Liouville's Theorem
3.5. Uniform Limits of Holomorphic Functions
3.6. The Zeros of a Holomorphic Function
Exercises

Chapter 4. Meromorphic Functions and Residues
4.1. The Behavior of a Holomorphic Function Near an Isolated Singularity
4.2. Expansion around Singular Points
4.3. Existence of Laurent Expansions
4.4. Examples of Laurent Expansions
4.5. The Calculus of Residues
4.6. Applications of the Calculus of Residues to the Calculation of Definite Integrals and Sums
4.7. Meromorphic Functions and Singularities at Infinity
Exercises

Chapter 5. The Zeros of a Holomorphic Function
5.1. Counting Zeros and Poles
5.2. The Local Geometry of Holomorphic Functions
5.3. Further Results on the Zeros of Holomorphic Functions
5.4. The Maximum Modulus Principle
5.5. The Schwarz Lemma
Exercises

Chapter 6. Holomorphic Functions as Geometric Mappings
6.1. Biholomorphic Mappings of the Complex Plane to Itself
6.2. Biholomorphic Mappings of the Unit Disc to Itself
6.3. Linear Fractional Transformations
6.4. The Riemann Mapping Theorem: Statement and Idea of Proof
6.5. Normal Families
6.6. Holomorphically Simply Connected Domains
6.7. The Proof of the Analytic Form of the Riemann Mapping Theorem
Exercises

Chapter 7. Harmonic Functions
7.1. Basic Properties of Harmonic Functions
7.2. The Maximum Principle and the Mean Value Property
7.3. The Poisson Integral Formula
7.4. Regularity of Harmonic Functions
7.5. The Schwarz Reflection Principle
7.6. Harnack's Principle
7.7. The Dirichlet Problem and Subharmonic Functions
7.8. The Perrbn Method and the Solution of the Dirichlet Problem
7.9. Conformal Mappings of Annuli
Exercises

Chapter 8. Infinite Series and Products
8.1. Basic Concepts Concerning Infinite Sums and Products
8.2. The Weierstrass Factorization Theorem
8.3. The Theorems of Weierstrass and Mittag-Leffler: Interpolation Problems
Exercises

Chapter 9. Applications of Infinite Sums and Products
9.1. Jensen's Formula and an Introduction to Blaschke Products
9.2. The Hadamard Gap Theorem
9.3. Entire Functions of Finite Order
Exercises

Chapter 10. Analytic Continuation
10.1. Definition of an Analytic Function Element
10.2. Analytic Continuation along a Curve
10.3. The Monodromy Theorem
10.4. The Idea of a Riemann Surface
10.5. The Elliptic Modular Function and Picard's Theorem
10.6. Elliptic Functions
Exercises

Chapter 11. Topology
11.1. Multiply Connected Domains
11.2. The Cauchy Integral Formula for Multiply Connected Domains
11.3. Holomorphic Simple Connectivity and Topological Simple Connectivity
11.4. Simple Connectivity and Connectedness of the Complement
11.5. Multiply Connected Domains Revisited
Exercises

Chapter 12. Rational Approximation Theory
12.1. Runge's Theorem
12.2. Mergelyan's Theorem
12.3. Some Remarks about Analytic Capacity
Exercises

Chapter 13. Special Classes of Holomorphic Functions
13.1. Schlicht Functions and the Bieberbach Conjecture
13.2. Continuity to the Boundary of Conformal Mappings
13.3. Hardy Spaces
13.4. Boundary Behavior of Functions in Hardy Classes
[An Optional Section for Those Who Know
Elementary Measure Theory]
Exercises

Chapter 14. Hilbert Spaces of Holomorphic Functions, the Bergman Kernel, and Biholomorphic Mappings
14.1. The Geometry of Hilbert Space
14.2. Orthonormal Systems in Hilbert Space
14.3. The Bergman Kernel
14.4. Bell's Condition R
14.5, Smoothness to the Boundary of Conformal Mappings
Exercises

Chapter 15. Special Functions
15.1. The Gamma and Beta Functions
15.2. The Riemann Zeta Function
Exercises

Chapter 16. The Prime Number Theorem
16.0. Introduction
16.1. Complex Analysis and the Prime Number Theorem
16.2. Precise Connections to Complex Analysis
16.3. Proof of the Integral Theorem
Exercises
APPENDIX A: Real Analysis
APPENDIX B: The Statement and Proof of Goursat's Theorem
References
Index

前言/序言

  This third edition follows the overall plan and even the specific arrangement of topics of the second edition, but there have been substantial changes in matters of detail. A considerable number of the proofs, especially in the later chapters, have been corrected, clarified, or simplified. Many of the exercises have been revised, and in many cases the exercises have been rearranged to make for greater consistency and less duplication. The mathematical roads that this new edition follows are the same as before, but we hope that the ride is considerably smoother.
  We are indebted to Harold Boas and Gerald B. Folland for their extremely careful reading of the second edition in the course of their using the book as a text. They provided far more suggestions and corrections than we had any right to expect of anyone but ourselves, and to the extent that this edition is superior to the previous, it is very largely to that extent that we are in their debt. Any remaining errors are, of course, our responsibility.
  Rahul Fernandez brought mathematical expertise, typesetting skills, and a great deal of patience to the daunting task of taking our heavily marked and indeed sometimes scribbled-upon manuscript of the second edition and making this third one. We are grateful to him for his efforts. We also thank the publishing staff of the American Mathematical Society for their willingness to undertake a third edition and for their support in general.
單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] 下載 mobi epub pdf txt 電子書 格式

單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] 下載 mobi pdf epub txt 電子書 格式 2024

單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

包裝很好,印刷也很好

評分

剛收到商品,帶塑封還沒拆開看

評分

618之前就做起瞭活動,還是沒忍住,就提前買瞭,還是挺劃算的。

評分

內容好,價格適中

評分

剛到手,618買的,書是不錯,有些壓傷。

評分

不錯不錯不錯不錯不錯不錯

評分

剛收到商品,帶塑封還沒拆開看

評分

對Riemann Zeta函數有較為詳盡的論述

評分

是一本好書,在證明,結構上,知識點和國內的教材不一樣,都很豐富。非常好的一本書。包裝也很好,有質感。

類似圖書 點擊查看全場最低價

單復變函數論(第三版 英文版) [Function Theory of One Complex Variable] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有