内容简介
《国外数学名著系列(影印版)32:模型论引论》以现代观点介绍模型论,着重强调其在代数学中的应用。前半部分包括模型构造技巧的经典论述,如类型空间,素模型,饱和模型,可数模型,不可辨元等理论及其应用。在书中后半部分,作者首先介绍莫利的范畴性定理,随之讨论稳定性理论,着重论述Ω-稳定性理论。最后,作者举例阐明了赫鲁索夫斯基如何将这些理论运用于丢番图几何。《国外数学名著系列(影印版)32:模型论引论》显著特色之一是包含一些其他入门型教材所未涉及的重要论题,如Ω-稳定群和强极小集的几何学。
作者DavidMarker是伊利诺斯大学芝加哥分校的数学教授,主要研究数学逻辑和模型论及其在代数和几何中的应用。《国外数学名著系列(影印版)32:模型论引论》基于作者1998年在数学科学研究所发表的系列演讲。
内页插图
目录
Introduction
1 Structures and Theories
1.1 Languages and Structures
1.2 Theories
1.3 Definable Sets and Interpretability
1.4 Exercises and Remarks
2 Basic Techniques
2.1 The Compactness Theorem
2.2 Complete Theories
2.3 Up and Down
2.4 Back and Forth
2.5 Exercises and Remarks
3 Algebraic Examples
3.1 Quantifier Elimination
3.2 Algebraically Closed Fields
3.3 Real Closed Fields
3.4 Exercises and Remarks
4 Realizing and Omitting Types
4.1 Types
4.2 Omitting Types and Prime Models
4.3 Saturated and Homogeneous Models
4.4 The Number of Countable Models
4.5 Exercises and Remarks
5 Indiscernibles
5.1 Partition Theorems
5.2 Order Indiscernibles
5.3 A Many-Models Theorem
5.4 An Independence Result in Arithmetic
5.5 Exercises and Remarks
6 w-Stable Theories
6.1 Uncountably Categorical Theories
6.2 Morley Rank
6.3 Forking and Independence
6.4 Uniqueness of Prime Model Extensions
6.5 Morley Sequences
6.6 Exercises and Remarks
7 w-Stable Groups
7.1 The Descending Chain Condition
7.2 Generic Types
7.3 The Indecomposability Theorem
7.4 Definable Groups in Algebraically Closed Fields
7.5 Finding a Group
7.6 Exercises and Remarks
8 Geometry of Strongly Minimal Sets
8.1 Pregeometries
8.2 Canonical Bases and Families of Plane Curves
8.3 Geometry and Algebra
8.4 Exercises and Remarks
A Set Theory
B Real Algebra
References
Index
前言/序言
国外数学名著系列(影印版)32:模型论引论 [Model Theory:An Introduction] 下载 mobi epub pdf txt 电子书 格式
国外数学名著系列(影印版)32:模型论引论 [Model Theory:An Introduction] 下载 mobi pdf epub txt 电子书 格式 2024
国外数学名著系列(影印版)32:模型论引论 [Model Theory:An Introduction] mobi epub pdf txt 电子书 格式下载 2024