R语言数据分析与挖掘实战

R语言数据分析与挖掘实战 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
张良均,云伟标,王路,刘晓勇 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-27

类似图书 点击查看全场最低价

图书介绍

出版社: 机械工业出版社
ISBN:9787111516040
版次:1
商品编码:11790199
品牌:机工出版
包装:平装
丛书名: 大数据技术丛书
开本:16开
出版时间:2015-10-01
用纸:胶版纸
页数:325


相关图书





图书描述

编辑推荐

  

10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶
  从数据挖掘的应用出发,以电力、航空、医疗等10个行业真实案例为主线,详细讲解了R数据挖掘建模的过程和数据挖掘的二次开发
  
  数据分析与挖掘已经成为大数据时代重要的技能之一,社会对这方面的人才需求随着数据的增长而不断增长。目前,数据分析与挖掘方面的技术和工具已经很多,而且在不断成熟,其中R语言及其相关技术在这两个方面具有非常明显的优势,应用范围也越来越广,但是这方面的系统性学习资料却十分稀缺。
  
  

为了满足目前的大数据分析人才需求,本书以大家熟知的数据挖掘建模工具R语言来展开,以解决某个应用的挖掘目标为前提,先介绍案例背景提出挖掘目标,再阐述分析方法与过程,完成模型构建,在介绍建模过程中同时穿插操作训练,把相关的知识点嵌入相应的操作过程中,使读者轻松理解并掌握相关的理论和知识点。

内容简介

  

  这是一本系统性的、以实践为导向的R数据挖掘与分析实战指南,多位技术专家结合自己10多年的经验,以电力、航空、医疗、互联网、制造业等10个行业的实战案例为主线,深入浅出地讲解了如何利用R语言及其相关技术进行数据挖掘建模、数据分析和二次开发,不仅为多个行业提供了成熟的解决方案,而且还提供了大量的技巧。

  本书共16章,分三个部分:

  基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具R语言进行了简明扼要的说明;第3、4、5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。

  实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程等关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。

  高级篇(第16章),介绍了基于R语言二次开发的数据挖掘应用软件——TipDM数据挖掘建模工具,并以此工具为例详细介绍了基于R语言完成数据挖掘二次开发的各个步骤,使读者体验到通过R语言实现数据挖掘二次开发的强大魅力。

  提供原始样本数据文件、建模源程序、数据挖掘模型及其源代码、教学用PPT等。

作者简介

  张良均 ,资深大数据挖掘专家和模式识别专家,高级信息项目管理师,有10多年的大数据挖掘应用、咨询和培训经验。为电信、电力、政府、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。此外,他精通Java EE企业级应用开发,是广东工业大学、华南师范大学、华南农业大学、贵州师范学院、韩山师范学院、广东技术师范学院兼职教授,著有《神经网络实用教程》、《数据挖掘:实用案例分析》、《MATLAB数据分析与挖掘实战》等畅销书。

目录

前 言
基 础 篇
第1章 数据挖掘基础2
1.1 某知名连锁餐饮企业的困惑2
1.2 从餐饮服务到数据挖掘3
1.3 数据挖掘的基本任务4
1.4 数据挖掘建模过程4
1.4.1 定义挖掘目标4
1.4.2 数据取样5
1.4.3 数据探索6
1.4.4 数据预处理7
1.4.5 挖掘建模7
1.4.6 模型评价7
1.5 常用数据挖掘建模工具7
1.6 小结9
第2章 R语言简介10
2.1 R安装10
2.2 R使用入门11
2.2.1 R操作界面11
2.2.2 RStudio窗口介绍12
2.2.3 R常用操作13
2.3 R数据分析包16
2.4 配套附件使用设置18
2.5 小结18
第3章 数据探索19
3.1 数据质量分析19
3.1.1 缺失值分析20
3.1.2 异常值分析20
3.1.3 一致性分析22
3.2 数据特征分析23
3.2.1 分布分析23
3.2.2 对比分析25
3.2.3 统计量分析27
3.2.4 周期性分析29
3.2.5 贡献度分析30
3.2.6 相关性分析31
3.3 R语言主要数据探索函数35
3.3.1 统计特征函数35
3.3.2 统计作图函数37
3.4 小结40
第4章 数据预处理41
4.1 数据清洗42
4.1.1 缺失值处理42
4.1.2 异常值处理45
4.2 数据集成45
4.2.1 实体识别46
4.2.2 冗余属性识别46
4.3 数据变换46
4.3.1 简单函数变换46
4.3.2 规范化47
4.3.3 连续属性离散化48
4.3.4 属性构造51
4.3.5 小波变换52
4.4 数据规约55
4.4.1 属性规约55
4.4.2 数值规约58
4.5 R语言主要数据预处理函数61
4.6 小结65
第5章 挖掘建模66
5.1 分类与预测66
5.1.1 实现过程66
5.1.2 常用的分类与预测算法67
5.1.3 回归分析68
5.1.4 决策树73
5.1.5 人工神经网络79
5.1.6 分类与预测算法评价83
5.1.7 R语言主要分类与预测算法函数87
5.2 聚类分析89
5.2.1 常用聚类分析算法89
5.2.2 KMeans聚类算法90
5.2.3 聚类分析算法评价95
5.2.4 R语言主要聚类分析算法函数95
5.3 关联规则97
5.3.1 常用关联规则算法97
5.3.2 Apriori算法98
5.4 时序模式102
5.4.1 时间序列算法103
5.4.2 时间序列的预处理104
5.4.3 平稳时间序列分析105
5.4.4 非平稳时间序列分析107
5.4.5 R语言主要时序模式算法函数114
5.5 离群点检测116
5.5.1 离群点检测方法117
5.5.2 基于模型的离群点检测方法118
5.5.3 基于聚类的离群点检测方法120
5.6 小结122
实 战 篇
第6章 电力窃漏电用户自动识别126
6.1 背景与挖掘目标126
6.2 分析方法与过程129
6.2.1 数据抽取130
6.2.2 数据探索分析130
6.2.3 数据预处理133
6.2.4 构建专家样本137
6.2.5 模型构建138
6.3 上机实验143
6.4 拓展思考144
6.5 小结144
第7章 航空公司客户价值分析145
7.1 背景与挖掘目标145
7.2 分析方法与过程146
7.2.1 数据抽取149
7.2.2 数据探索分析149
7.2.3 数据预处理150
7.2.4 模型构建153
7.3 上机实验158
7.4 拓展思考159
7.5 小结159
第8章 中医证型关联规则挖掘160
8.1 背景与挖掘目标160
8.2 分析方法与过程162
8.2.1 数据获取163
8.2.2 数据预处理165
8.2.3 模型构建169
8.3 上机实验171
8.4 拓展思考172
8.5 小结172
第9章 基于水色图像的水质评价173
9.1 背景与挖掘目标173
9.2 分析方法与过程174
9.2.1 数据预处理175
9.2.2 模型构建177
9.2.3 水质评价179
9.3 上机实验180
9.4 拓展思考180
9.5 小结181
第10章 家用电器用户行为分析与事件识别182
10.1 背景与挖掘目标182
10.2 分析方法与过程183
10.2.1 数据抽取184
10.2.2 数据探索分析185
10.2.3 数据预处理185
10.2.4 模型构建195
10.2.5 模型检验198
10.3 上机实验200
10.4 拓展思考201
10.5 小结202
第11章 应用系统负载分析与磁盘容量预测203
11.1 背景与挖掘目标203
11.2 分析方法与过程205
11.2.1 数据抽取206
11.2.2 数据探索分析206
11.2.3 数据预处理207
11.2.4 模型构建208
11.3 上机实验213
11.4 拓展思考214
11.5 小结215
第12章 电子商务智能推荐服务216
12.1 背景与挖掘目标216
12.2 分析方法与过程222
12.2.1 数据抽取224
12.2.2 数据探索分析225
12.2.3 数据预处理230
12.2.4 模型构建235
12.3 上机实验245
12.4 拓展思考246
12.5 小结251
第13章 基于数据挖掘技术的市财政收入分析预测模型252
13.1 背景与挖掘目标252
13.2 分析方法与过程254
13.2.1 灰色预测与神经网络的组合模型255
13.2.2 数据探索分析256
13.2.3 模型构建259
13.3 上机实验273
13.4 拓展思考273
13.5 小结274
第14章 基于基站定位数据的商圈分析275
14.1 背景与挖掘目标275
14.2 分析方法与过程277
14.2.1 数据抽取277
14.2.2 数据探索分析278
14.2.3 数据预处理279
14.2.4 模型构建282
14.3 上机实验286
14.4 拓展思考286
14.5 小结287
第15章 电商产品评论数据情感分析288
15.1 背景与挖掘目标288
15.2 分析方法与过程288
15.2.1 评论数据采集289
15.2.2 评论预处理292
15.2.3 文本评论分词297
15.2.4 模型构建298
15.3 上机实验312
15.4 拓展思考313
15.5 小结314
提 高 篇
第16章 基于R语言的数据挖掘二次开发316
16.1 混合编程应用体验——TipDM数据挖掘平台316
16.2 二次开发过程环境配置320
16.3 R语言数据挖掘二次开发实例322
16.4 小结325
参考资料326





前言/序言

  为什么要写这本书LinkedIn对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最受关注的25项技能中,对数据挖掘人才的需求排名第一。那么数据挖掘是什么?数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的发展趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。
  但跟国外相比,我国由于信息化程度不太高,企业内部信息不完整,零售业、银行、保险、证券等对数据挖掘的应用并不太理想。但随着市场竞争的加剧,各行业对数据挖掘技术的意愿越来越强烈,可以预计,未来几年各行业的数据分析应用一定会从传统的统计分析发展到大规模数据挖掘应用。在大数据时代,数据过剩、人才短缺,数据挖掘专业人才的培养又需要专业知识和职业经验积累。所以,本书注重数据挖掘理论与项目案例实践相结合,可以让读者获得真实的数据挖掘学习与实践环境,更快、更好地学习数据挖掘知识与积累职业经验。
  总体来说,随着云时代的来临,大数据技术将具有越来越重要的战略意义。大数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产要素,人们对于海量数据的运用预示着新一轮生产率增长和消费者盈余浪潮的到来。大数据分析技术将帮助企业用户在合理的时间内攫取、管理、处理、整理海量数据,为企业经营决策提供积极的帮助。大数据分析作为数据存储和挖掘分析的前沿技术,广泛应用于物联网、云计算、移动互联网等战略性新兴产业。虽然大数据目前在国内还处于初级阶段,但是其商业价值已经显现出来,特别是有实践经验的大数据分析人才更是各企业争夺的热门。为了满足日益增长的对大数据分析人才的需求,很多大学开始尝试开设不同程度的大数据分析课程。“大数据分析”作为大数据时代的核心技术,必将成为高校数学与统计学专业的重要课程之一。
  本书特色笔者从实践出发,结合大量数据挖掘工程案例与教学经验,以真实案例为主线,深入浅出地介绍数据挖掘建模过程中的有关任务:数据探索、数据预处理、分类与预测、聚类分析、时序预测、关联规则挖掘、智能推荐、偏差检测等。因此,本书的编排以解决某个应用的挖掘目标为前提,先介绍案例背景,提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模过程中会穿插操作训练,把相关的知识点嵌入相应的操作过程中。为方便读者轻松地获取一个真实的实验环境,本书使用大家熟知的R语言对样本数据进行处理以进行挖掘建模。
  根据读者对案例的理解,本书配套提供了真实的原始样本数据文件及数据探索、数据预处理、模型构建及评价等不同阶段的R语言代码程序,读者可以从全国大学生数据挖掘竞赛网站免费下载。另外,为方便教师授课需要,本书还特意提供了建模阶段的过程数据文件、PPT课件,以及基于R、SAS EM、SPSS Modeler、MATLAB、TipDM等上机实验环境下的数据挖掘各阶段程序/模型及相关代码,读者可通过热线电话、企业QQ或以下微信公众号咨询获取。读者也可通过这些方式进行在线咨询。 本书适用对象开设有数据挖掘课程的高校教师和学生。
  目前国内不少高校将数据挖掘引入本科教学中,在数学、计算机、自动化、电子信息、金融等专业开设了数据挖掘技术相关的课程,但目前这一课程的教学仍然主要限于理论介绍。因为单纯的理论教学过于抽象,学生理解起来往往比较困难,教学效果也不甚理想。本书提供的基于实战案例和建模实践的教学,能够使师生充分发挥互动性和创造性,做到理论联系实际,使师生获得最佳的教学效果。
  需求分析及系统设计人员。
  这类人员可以在理解数据挖掘原理及建模过程的基础上,结合数据挖掘案例完成精确营销、客户分群、交叉销售、流失分析、客户信用记分、欺诈发现、智能推荐等数据挖掘应用的需求分析和设计。
  数据挖掘开发人员。
  这类人员可以在理解数据挖掘应用需求和设计方案的基础上,结合本书提供的基于第三方的接口快速完成数据挖掘应用的编程实现。
  进行数据挖掘应用研究的科研人员。
  许多科研院所为了更好地对科研工作进行管理,纷纷开发了适应自身特点的科研业务管理系统,并在使用过程中积累了大量的科研信息数据。但是,这些科研业务管理系统一般没有对这些数据进行深入分析,对数据所隐藏的价值并没有充分挖掘利用。科研人员需要利用数据挖掘建模工具及有关方法论来深挖科研信息的价值,从而提高科研水平。
  关注高级数据分析的人员。
  业务报告和商业智能解决方案对于了解过去和现在的状况可能是非常有用的。但是,数据挖掘的预测分析解决方案还能使这类人员预见未来的发展状况,让他们的机构能够先发制人,而不是处于被动。因为数据挖掘的预测分析解决方案可将复杂的统计方法和机器学习技术应用到数据之中,通过使用预测分析技术来揭示隐藏在交易系统或企业资源计划(ERP)、结构数据库和普通文件中的模式与趋势,从而为这类人员做决策提供科学依据。
  如何阅读本书本书共16章,分三个部分:基础篇、实战篇、提高篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了多个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验快速理解相关知识与理论。
  第一部分是基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具——R语言进行了简明扼要的说明;第3~5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。
  第二部分是实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的。在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者数据挖掘技术在案例应用中的理解。
  第三部分是提高篇(第16章),介绍了基于R语言二次开发的数据挖掘应用软件——TipDM数据挖掘建模工具,并以此工具为例详细介绍了基于R语言完成数据挖掘二次开发的各个步骤,使读者体验到通过R语言实现数据挖掘二次开发的强大魅力。
  勘误和支持除封面署名外,参加本书编写工作的还有樊哲、陈庚、卢丹丹、魏润润、范正丰、徐英刚、廖晓霞、刘名军、李成华、刘丽君等。由于笔者的水平有限,编写时间仓促,书中难免会出现一些错误或者不准确的地方,恳请读者批评指正。为此,读者可通过作者微信公众号TipDM、TipDM官网反馈有关问题。
  读者可以将书中的错误及遇到的任何问题反馈给我们,我们将尽量在线上为读者提供最满意的解答。本书的全部建模数据文件及源程序,可以从全国大学生数据挖掘竞赛网站下载,我们会将相应内容的更新及时发布出来。如果您有更多的宝贵意见,欢迎发送邮件至邮箱,期待能够得到您的真挚反馈。
  致谢本书编写过程中,得到了广大企事业单位科研人员的大力支持!在此谨向广东电力科学研究院、广西电力科学研究院、广东电信规划设计院、珠江/黄海水产研究所、轻工业环境保护研究所、华南师范大学、广东工业大学、广东技术师范学院、南京中医药大学、华南理工大学、湖南师范大学、韩山师范学院、广东石油化工学院、中山大学、广州泰迪智能科技有限公司、武汉泰迪智慧科技有限公司等单位给予支持的专家及师生致以深深的谢意。
  在本书的编辑和出版过程中还得到了参与全国大学生数据挖掘竞赛的众多师生,以及机械工业出版社杨福川、姜影等编辑无私的帮助与支持,在此一并表示感谢。
  张良均



R语言数据分析与挖掘实战 下载 mobi epub pdf txt 电子书 格式

R语言数据分析与挖掘实战 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

R语言数据分析与挖掘实战 下载 mobi pdf epub txt 电子书 格式 2024

R语言数据分析与挖掘实战 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

朋友推荐,听说还很不错,还没有看!

评分

为了满足目前的大数据分析人才需求,本书以大家熟知的数据挖掘建模工具Python语言来展开,以解决某个应用的挖掘目标为前提,先介绍案例背景提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模过程中穿插操作训练,把相关的知识点嵌入相应的操作过程中,使读者轻松理解并掌握相关的理论和知识点。 

评分

中午拿到书,打开看了一下,不错,值得研究

评分

也许,你继续等待,直到你吃了那碗饭,然后,一整天,都很开心。

评分

这本书还可以

评分

希望能从这本书开始,我能了解R语言,掌握这项技能

评分

粗粗的看了前沿还可以感觉

评分

东西不错,用着不错,快递神速。

评分

买书一直都选择京东,又快又实惠。

类似图书 点击查看全场最低价

R语言数据分析与挖掘实战 mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有