编辑推荐
《物理学家用的几何代数》包括导论;二维和三维的几何代数;经典力学;几何代数基础;相对性和时空;几何微积分;经典电动力学;量子论和自旋;多粒子态和量子纠缠;几何;微积分和群论中的高等论题;拉格朗日和哈密尔顿技巧;对称和规范理论;引力。《物理学家用的几何代数》读者对象:物理、几何代数专业的学生、老师和相关的科研人员。
内容简介
《物理学家用的几何代数》是一部不仅让对物理学感兴趣的读者的读物,也是一本对物理现实感兴趣的读者的读物。几何代数在过去的十年中得到了快速发展,成为物理和工程领域的一个重要课题。作者是该领域的一个领头人物,做了许多重大进展。书中带领读者走进该领域,其中包括好多应用,黑洞物理学和量子计算,非常适于作为一本几何代数物理应用方面的研究生教程。
内页插图
目录
Preface
Notation
1 Introduction
1.1 Vector (linear) spaces
1.2 The scalar product
1.3 Complex numbers
1.4 Quaternions
1.5 The cross product
1.6 The outer product
1.7 Notes
1.8 Exercises
2 Geometric algebra in two and three dimensions
2.1 A new product for vectors
2.2 An outline of geometric algebra
2.3 Geometric algebra of the plane
2.4 The geometric algebra of space
2.5 Conventions
2.6 Reflections
2.7 Rotations
2.8 Notes
2.9 Exercises
3 Classical mechanics
3.1 Elementary principles
3.2 Two—body central force interactions
3.3 Celestial mechanics and perturbations
3.4 Rotating systems and rigid—body motion
3.5 Notes
3.6 Exercises
4 Foundations of geometric algebra
4.1 Axiomatic development
4.2 Rotations and refiections
4.3 Bases, frames and components
4.4 Linear algebra
4.5 Tensors and components
4.6 Notes
4.7 Exercises
5 Relativity and spacetime
5.1 An algebra for spacetime
5.2 Observers, trajectories and frames
5.3 Lorentz transformations
5.4 The Lorentz group
5.5 Spacetime dynamics
5.6 Notes
5.7 Exercises
6 Geometric calculus
6.1 The vector derivative
6.2 Curvilinear coordinates
6.3 Analytic functions
6.4 Directed integration theory
6.5 Embedded surfaces and vector manifolds
6.6 Elasticity
6.7 Notes
6.8 Exercises
7 Classical electrodynamics
7.1 Maxwell's equations
7.2 Integral and conservation theorems
7.3 The electromagnetic field of a point charge
7.4 Electromagnetic waves
7.5 Scattering and diffraction
7.6 Scattering
7.7 Notes
7.8 Exercises
8 Quantum theory and spinors
8.1 Non—relativistic quantum spin
8.2 Relativistic quantum states
8.3 The Dirac equation
8.4 Central potentials
8.5 Scattering theory
8.6 Notes
8.7 Exercises
9 Multiparticle states and quantum entanglement
9.1 Many—body quantum theory
9.2 Multiparticle spacetime algebra
9.3 Systems of two particles
9.4 Relativistic states and operators
9.5 Two—spinor calculus
9.6 Notes
9.7 Exercises
10 Geometry
10.1 Projective geometry
10.2 Conformal geometry
10.3 Conformal transformations
10.4 Geometric primitives in conformal space
10.5 Intersection and reflection in conformal space
10.6 Non—Euclidean geometry
10.7 Spacetime conformal geometry
10.8 Notes
10.9 Exercises
11 Further topics in calculus and group theory
11.1 Multivector calculus
11.2 Grassmann calculus
11.3 Lie groups
11.4 Complex structures and unitary groups
11.5 The generallinear group
11.6 Notes
11.7 Exercises
12 Lagrangian and Hamiltonian techniques
12.1 The Euler—Lagrange equations
12.2 Classical models for spin—1/2 particles
12.3 Hamiltonian techniques
12.4 Lagrangian field theory
12.5 Notes
12.6 Exercises
13 Symmetry and gauge theory
13.1 Conservation laws in field theory
13.2 Electromagnetism
13.3 Dirac theory
13.4 Gauge principles for gravitation
13.5 The gravitational field equations
13.6 The structure of the Riemann tensor
13.7 Notes
13.8 Exercises
14 Gravitation
14.1 Solving the field equations
14.2 Spherically—symmetric systems
14.3 Schwarzschild black holes
14.4 Quantum mechanics in a black hole background
14.5 Cosmology
14.6 Cylindrical systems
14.7 Axially—symmetric systems
14.8 Notes
14.9 Exercises
Bibliography
Index
前言/序言
物理学家用的几何代数 [Geometric Algebra for Physicists] 下载 mobi epub pdf txt 电子书 格式
物理学家用的几何代数 [Geometric Algebra for Physicists] 下载 mobi pdf epub txt 电子书 格式 2024
物理学家用的几何代数 [Geometric Algebra for Physicists] mobi epub pdf txt 电子书 格式下载 2024