极限论与微分学新探

极限论与微分学新探 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
定光桂 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-26

类似图书 点击查看全场最低价

图书介绍

出版社: 科学出版社
ISBN:9787030395528
版次:1
商品编码:11435811
包装:平装
丛书名: 现代数学基础丛书
开本:16开
出版时间:2014-02-01
页数:272
正文语种:中文


相关图书





图书描述

内容简介

  这是一本探索性的书.笔者试图将实数、极限和微分学这些数学分析的基础理论用现代分析的观点来处理.《极限论与微分学新探》既要将上述理论的基本内容全部覆盖,又要将原内容赋予一系列的发展和创新.
  这是一本“雅俗共赏”的书,《极限论与微分学新探》通俗,是因为阅读《极限论与微分学新探》的预备知识仅仅需要初等数学知识(中学内容);而《极限论与微分学新探》“雅”,则是因为其观点新、技巧性强且创新内容多.这是一本培养创造性思维的书.《极限论与微分学新探》讲述由浅而深,从形象到抽象;并特别注意引导读者去“举一反三”,从各种“(正)例”“反例”以及“注”的学习中学会联想,并发现且引导出新的结果.《极限论与微分学新探》既可以作为数学分析的教材,亦可作为高年级大学生、研究生和需用此相应知识的科教人员的参考书.

目录

第 1 章 实数的完备性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 有理数集 Q 的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 四则运算性质 (代数结构) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 全序性质 (序结构) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1.3 拓扑结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 实数的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3 实数的其他公理化引入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 数列极限初论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 定义实数的各公理所对应的完备化定理间之等价性 . . . . . . . . . . . . . . . . . . . 25
1.6 任何抽象距离空间之完备性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.7 极限点定理与有限覆盖定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
第 2 章 数列的极限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 数列极限的存在. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
2.2 数列极限存在的某些传递性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3 Stolz(施笃兹) 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4 11
,
0
0
与 11 型极限. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
2.5 数列的上、下极限. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
第 3 章 数项级数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1 级数的敛散性及该性质的传递性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 同号项级数的敛散性及其判别法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3 变号级数的收敛 (条件收敛) 与绝对收敛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.4 绝对收敛级数与条件收敛级数的重排级数之特性 . . . . . . . . . . . . . . . . . . . . 127
3.5 级数的乘法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.6 累次级数与二重级数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
3.7 无穷乘积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
¢ viii ¢ 目 录
第 4 章 函数的连续性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.1 集的映射与函数 (泛函) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2 函数的极限及其存在性判别法 (含:函数的上、下极限) . . . . . . . . . . . . . . 175
4.3 函数极限的基本性质及其存在性的传递. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
4.4 无穷小量 (或无穷大量) 之间的比较. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
4.5 函数在一点的连续性及相关性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.5.1 多项式函数的连续性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
4.5.2 三角函数和反三角函数的连续性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.5.3 对数函数和指数函数的连续性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.5.4 幂函数的连续性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.6 距离空间中的泛函 (函数) 之极限性质 (含:方向极限、
累次极限与重极限) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.7 距离空间的初等拓扑性质 (含:上、下半连续泛函) . . . . . . . . . . . . . . . . . . 229
4.8 紧集上连续泛函 (函数) 的整体性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
4.9 连通集上连续函数的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
4.10 有限维赋范空间中的线性泛函与凸泛函. . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
第 5 章 一元函数的微分学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
5.1 导数及其求法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.2 高阶导数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300
5.3 函数的单调性、局部极值性、凸凹性及作图 . . . . . . . . . . . . . . . . . . . . . . . . . . 310
5.4 微分中值公式与求不定型极限的 L0Hospital 法则 . . . . . . . . . . . . . . . . . . . . 343
5.5 函数的微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.6 Taylor 定理 (公式) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
第 6 章 多元函数的微分学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
6.1 偏导数 (含:方向导数) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
6.2 多元函数的微分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401
6.3 空间 Rn 到 Rm 中映像 (算子) 的微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
6.4 隐函数 (隐映像) 定理及逆映像定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434
6.5 Taylor 公式及条件极值理论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457
6.6 几何上的几点应用 (切线、切面及法向量) . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

前言/序言


极限论与微分学新探 下载 mobi epub pdf txt 电子书 格式

极限论与微分学新探 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

极限论与微分学新探 下载 mobi pdf epub txt 电子书 格式 2024

极限论与微分学新探 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

极限论与微分学新探 mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有