數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart]

數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[美] 杜布(Doob J.L.) 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-23

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 世界圖書齣版公司
ISBN:9787510058417
版次:1
商品編碼:11273583
包裝:平裝
外文名稱:Classical Potential Theory and Its Probabilistic Counterpart
開本:24開
齣版時間:2013-03-01
用紙:膠版紙
頁數:846
正文語種:英文


相關圖書





圖書描述

內容簡介

  Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe with jaun- diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory.For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super- martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) invomng the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and,so on.

內頁插圖

目錄

Introduction
Notation and Conventions
Part 1
Classical and Parabolic Potential Theory
Chapter I
Introduction to the Mathematical Background of Classical Potential Theory
1.The Context of Green's Identity
2.Function Averages
3.Harmonic Functions
4.Maximum-Minimum Theorem for Harmonic Functions
5.The Fundamental Kernel for RN and Its Potentials
6.Gauss Integral Theorem
7.The Smoothness of Potentials ; The Poisson Equation
8.Harmonic Measure and the Riesz Decomposition
Chapter II
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions
1.The Green Function of a Ball; The Poisson Integral
2.Hamack's Inequality
3.Convergence of Directed Sets of Harmonic Functions
4.Harmonic, Subharmonic, and Superharmoruc Functions
5.Minimum Theorem for Superharmonic Functions
6.Application of the Operation TB
7.Characterization of Superharmonic Functions in Terms of Harmonic Functions
8.Differentiable Superharmonic Functions
9.Application of Jensen's Inequality
10.Superharmonic Funaions on an Annulus
II.Examples
12.The Kelvin Transformation
13.Greenian Sets
14.The L1(uB_) and D(uB_) Classes of Harmonic Functions on a Ball B; The
Riesz-Herglotz Theorem
15.The Fatou Boundary Limit Theorem
16.Minimal Harmonic Functions
Chapter III
Infima of Families of Superharmonic Functidns
1.Least Superharmonic Majorant (LM) and Greatest Subharmonic Minorant (GM)
2.Generalization of Theorem I
3.Fundamental Convergence Theorem (Preliminary Version)
4.The Reduction Operation
5.Reduction Properties
6.A Smallness Property of Reductions on Compact Sets
7.The Natural (Pointwise) Order Decomposition for Positive Superharmonk
Functions
Chapter 1V
Potentials on Special Open Sets
1.Special Open Sets, and Potentials on Them
2.Examples
3.A Fundamental Smallness Property of Potentials
4.Increasing Sequences of Potentials
5.Smoothing of a Potential
6.Uniqueness of the Measure Determining a Potential
7.Riesz Measure Associated with a Superharmonic Function
8.Riesz Decomposition Theorem
9.Counterpart for Superharmonic Functions on R2 ofthe Riesz
Decomposition
10.An Approximation Theorem
Chapter V
Polar Sets and Their Applications
1.Definition
2.Superharmonic Functions Associated with a Polar Set
3.Countable Unions of Polar Sets
4.Properties ofPolar Sets
5.Extension of a Superharmonic Function
6.Greenian Sets in IR2 as the Complements of Nonpolar Sets
7.Superharmonic Function Minimum Theorem (Extension of Theorem I1.5)
8.Evans-Vasilesco Theorem
9.Approximation of a Potential by Continuous Potentials
10.The Domination Principle
I1.The Infinity Set of a Potential and the Riesz Measure
……

Part 2
Probabilistic Countrepart of Part 1
Part 3
數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] 下載 mobi epub pdf txt 電子書 格式

數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] 下載 mobi pdf epub txt 電子書 格式 2024

數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

我喜歡看書,喜歡看各種各樣的書,看的很雜,文學名著,流行小說都看,隻要作者的文筆不是太差,總能讓我從頭到腳看完整本書。隻不過很多時候是當成故事來看,看完瞭感嘆一番也就丟下瞭。所在來這裏買書是非常明智的。然而,目前社會上還有許多人被一些價值不大的東西所束縛,卻自得其樂,還覺得很滿足。經過幾百年的探索和發展,人們對物質需求已不再迫切,但對於精神自由的需求卻無端被抹殺瞭。總之,我認為現代人最缺乏的就是一種開闊進取,尋找最大自由的精神。中國人講虛實相生,天人閤一的思想,於空寂處見流行,於流行處見空寂,從而獲得對於道的體悟,唯道集虛。這在傳統的藝術中得到瞭充分的體現,

評分

評分

包裝印刷質量很好,希望這樣的書多一些纔好

評分

評分

我喜歡看書,喜歡看各種各樣的書,看的很雜,文學名著,流行小說都看,隻要作者的文筆不是太差,總能讓我從頭到腳看完整本書。隻不過很多時候是當成故事來看,看完瞭感嘆一番也就丟下瞭。所在來這裏買書是非常明智的。然而,目前社會上還有許多人被一些價值不大的東西所束縛,卻自得其樂,還覺得很滿足。經過幾百年的探索和發展,人們對物質需求已不再迫切,但對於精神自由的需求卻無端被抹殺瞭。總之,我認為現代人最缺乏的就是一種開闊進取,尋找最大自由的精神。中國人講虛實相生,天人閤一的思想,於空寂處見流行,於流行處見空寂,從而獲得對於道的體悟,唯道集虛。這在傳統的藝術中得到瞭充分的體現,

評分

這是大師Doob的經典之作,非常喜歡這本書。但遺憾的是這本書的裝訂不好。“位勢論”一詞的來源在於,在19世紀的物理學中,自然界的基本力被相信為從滿足拉普拉斯方程的位勢導齣。因此,位勢論研究可以作為位勢的函數。今天,我們知道自然界更為復雜——錶述力的方程可以是諸如愛因斯坦場方程或者楊-米爾斯方程這樣的非綫性偏微分方程的係統,而拉普拉斯方程隻是在受限情況下的近似。但是,“位勢論”一詞還是保留瞭作為對滿足拉普拉斯方程的函數的研究的方便叫法。位勢論和拉普拉斯方程的理論有很大程度的重疊。這個程度是:可能可以在兩個領域劃分一個區彆,區彆在於重點而不是主題,並且主要在於下列區彆——位勢論注重函數的性質而不是方程的性質。例如,調和函數的奇點的一個結果可說屬於位勢論;而關於解如何依賴於邊界條件的一個結果,卻是拉普拉斯方程理論。當然,這不是一個嚴格和顯然的區彆,實踐上兩個領域有很大交互,它們的結果和方法相互為用。位勢論起源於物理學的萬有引力學說和靜電學。遠在18世紀,拉格朗日就注意到力場是一個函數(稱為牛頓位勢)的梯度。拉普拉斯進一部證明瞭,在不分布質量的地方,位勢滿足偏微分方程△u=0.這樣,物理問題便化為求解偏微分方程的數學問題。在19世紀前期,泊鬆給齣瞭球域上狄利剋雷問題解的積分公式;格林對邊界充分光滑的有界區域,從物理直觀並藉助與格林函數給齣瞭解。後來,高斯采用瞭變分問題解決瞭平衡問題並得到狄利剋雷問題的新解法。狄利剋雷和黎曼利用狄利剋雷原理給齣裏解。在19世紀後期,有施瓦茲交錯法,特彆是龐加萊提齣瞭對後來的發展有重要意義的掃除法。但是,由於缺乏足夠的數學工具,這些解法是不嚴密的。在19世紀,對解的性質也進行瞭研究。施瓦茲證明瞭狄利剋雷問題解的極值原理;黎曼把位勢論與函數論做統一處理,揭示瞭格林函數、位勢與保形映射之間的密切聯係;哈萊剋建立瞭哈萊剋不等式與哈萊剋收斂原理。此外,關於諾依曼問題及多重調和函數的研究也有不少成果。這樣一來,到瞭上世紀末,位勢論的三個基本原理,即極小值原理、收斂性質以及狄利剋雷問題已經建立。但是,一直到上世紀末,位勢論的研究限於n維歐氏空間的牛頓位勢(n≥3)和對數位勢(n=2),即所謂經典位勢論。本世紀以來,隨著測度和積分理論、泛函分析、一般拓撲學、抽象代數以及概率論的發展,位勢論也得到蓬勃發展,開闢瞭新的研究方嚮,創造瞭新方法,為位勢在不分布質量的地方是調和的,所以關於狄利剋雷問題的研究一直是位勢論中的一個重要內容。由於(G.F.)B.黎曼把位勢論和函數論統一處理,以及現代分析的基礎理論(如泛函分析、測度論、廣義函數、拓撲學等)在位勢論中的深入應用,位勢論成瞭數學領域內比較徹底地完成瞭現代化變革的一個分支。它同黎曼麯麵論、偏微分方程、調和分析、概率論等數學分支也有著緊密的聯係。 馬丁緊緻化 是位勢論中重要的一種緊緻化。 馬丁空間與馬丁邊界 為紀念R.S.馬丁,將格林空間相對於函數族緊緻化空間惂 稱為馬丁空間;惂Ω稱為馬丁邊界。所有函數在惂都有連續的開拓且能辨彆。惂可度量化。的一般區域的歐氏邊界與全然不同;但當是球或其他較為正則的區域時,惂等同於的歐氏閉包;對R2的單連通格林區域,等同於卡拉西奧多裏分歧邊界。廣。它促使瞭著名的關於凸錐的極端點的紹凱定理的産生並且後者反過來簡化瞭前者的證明。 對馬丁邊界同樣可考慮狄利剋雷問題,可討論一個集在的瘦與肥並進而把Ω上的細拓撲開拓到。對任意上調和函數u0及調和函數上至多除去一個h零測集外處處有細極限,這是杜布對著名的法圖定理即球內的正調和函數在邊界上幾乎處處有不相切極限的重大推廣。由於位勢論的大部分結果都可由其狄利剋雷問題、極值原理和收斂性質三個基本原理導齣,且為瞭適應偏微分方程和隨機過程的需要,公理化位勢論,即調和空間理論迅速地發展起來,它提供瞭統一處理問題的方法。從位勢論與概率論的密切聯係,最明顯的是,決定一個馬爾可夫過程的轉移函數可以用來定義位勢論中的格林函數。位勢論中的許多概念和原理都有明確的概率意義,特彆體現在上鞅理論中,比如上調和函數相應於上鞅。位勢論中的法圖型邊界極限理論相應於上鞅收斂理論;單調上調和函數列的極限性質與單調上鞅的極限過程性質頗為相似;某些上調和函數、上鞅稱為位勢,它們在各自的理論中都有與之關聯的測度,都遵從隻涉及這些測度支柱的控製原理,以及在概率論與位勢論中,都存在一個性質相同的簡化測度,它導齣與位勢相關聯的測度的掃除等等。維納過程是一種連續時間隨機過程,得名於諾伯特·維納。由於與物理學中的布朗運動有密切關係,也常被稱為“布朗運動過程”或簡稱為布朗運動。維納過程是萊維過程(指左極限右連續的平穩獨立增量隨機過程)中最有名的一類,在純數學、應用數學、經濟學與物理學中都有重要應用。

評分

評分

評分

類似圖書 點擊查看全場最低價

數學經典教材:經典位勢論及其對應的概率論(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有