微积分(上册)(第3版)/面向21世纪课程教材

微积分(上册)(第3版)/面向21世纪课程教材 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
同济大学数学系 编



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-18

类似图书 点击查看全场最低价

图书介绍

出版社: 高等教育出版社
ISBN:9787040266382
版次:3
商品编码:10858023
包装:平装
开本:16开
出版时间:2009-06-01
页数:363


相关图书





图书描述

编辑推荐

《面向21世纪课程教材:微积分(上册)(第3版)》前两版的主要特色是在保持传统教材、特别是同济大学编《高等数学》的优点的基础上,努力贯彻改革精神,体现教改成果。《面向21世纪课程教材:微积分(上册)(第3版)》修订时注意保持这一特色,同时使教材进一步贴近广大学生的实际,更便于教学和学生自学。为此在保持原有框架和内容、风格不变的前提下,对部分内容作了修改和重写。比如对函数的凸性,尽管其有近代数学的应用背景,但同行反映实际教学时有不便之处,容易使学生在阅读参考材料时产生混淆,故这次重新处理为曲线的凹凸性。又如对曲面的切平面和法向量的导出,这次作了修订,更加突出其几何直观,便于学生掌握。再如对“傅里叶级数与最佳均方逼近”这一节打*号的内容的处理,作了进一步的精简,突出主要思想,简化细节。

内容简介

《面向21世纪课程教材:微积分(上册)(第3版)》参照新修订的“工科类本科数学基础课程教学基本要求”,结合当前的教学实际,在原书第二版的基础上修订而成。在保持同济编教材优秀传统的同时,努力贯彻教学改革的精神,加强对微积分的基本概念、理论、方法和应用实例的介绍,突出微积分的应用。本书结构严谨,逻辑清晰,文字表述详尽通畅,平易近人,易教易学,改编后的内容编排也更利于教学的组织和安排。所选用的习题突出数学基本能力的训练而不过分追求技巧,既有传统的优秀题目,又从国外教材中吸取或改编了一些有较高训练效能的新颖习题。通过数学实验将微积分与数学软件的应用有机结合起来是本书的一个特色,经过改编,数学实验与教学内容的结合更加紧密,有利于培养学生的数学建模能力。书中有些内容用楷书排印或加了“*”号,教师可灵活掌握。本书可作为工科和其他非数学类专业的高等数学(微积分)教材或参考书。
全书分上、下两册出版。同济大学数学系编著的《面向21世纪课程教材:微积分(上册)(第3版)》的内容为函数、极限与连续,一元函数微分学,一元函数积分学和微分方程,四个与一元函数微积分相关的数学实验,附录中有数学软件Mathematica的简介。下册内容为向量代数与空间解析几何,多元函数微分学,重积分,曲线积分与曲面积分,无穷级数,三个与多元微积分和级数有关的数学实验。书末附有习题答案与提示。

目录

预备知识
一、集合(1) 二、映射(4) 三、一元函数(6) 习题(17)

第一章 极限与连续
第一节 微积分中的极限方法
第二节 数列的极限
一、数列极限的定义(24) 二、数列极限的性质(29) 习题1-2(31)
第三节 函数的极限
一、函数极限的定义(32) 二、函数极限的性质(38)
习题1-3(40)
第四节 极限的运算法则
一、无穷小与无穷大(41) 二、极限的运算法则(45) 习题l 4(49)
第五节 极限存在准则与两个重要极限
一、夹逼准则(50) 二、单调有界收敛准则(53) 习题1-5(57)
第六节 无穷小的比较
一、无穷小的比较(58) 二、等价无穷小(60) 习题1-6(63)
第七节 函数的连续性与连续函数的运算
一、函数的连续性(63) 二、函数的间断点(66)
三、连续函数的运算(68) 习题1-7(70)
第八节 闭区间上连续函数的性质
一、最大值最小值定理(71) 二、零点定理与介值定理(72)
习题1-8(75)
总习题一

第二章 一元函数微分学
第一节 导数的概念
一、导数概念的引出(80) 二、导数的定义(81)
三、函数的可导性与连续性的关系(85) 习题2-1(86)
第二节 求导法则
一、函数的线性组合、积、商的求导法则(87) 二、反函数的导数(91)
三、复合函数的导数(93) 习题2 2(96)
第三节 隐函数的导数和由参数方程确定的函数的导数
一、隐函数的导数(98) 二、由参数方程确定的函数的导数(102)
三、相关变化率(104) 习题2-3(106)
第四节 高阶导数
习题2-4(111)
第五节 函数的微分与函数的线性逼近
一、微分的定义(112) 二、微分公式与运算法则(114)
三、微分的意义与应用(116) 习题2-5(120)
第六节 微分中值定理
习题2 6(126)
第七节 泰勒公式
习题2-7(133)
第八节 洛必达法则
一、未定式(134) 二、未定式(136) 三、其他类型的未定式(137)
习题2-8(139)
第九节 函数单调性与曲线凹凸性的判别法
一、函数单调性的判别法(140) 二、曲线的凹凸性及其判别法(143)
习题2-9(149)
第十节 函数的极值与最大、最小值
一、函数的极值及其求法(150) 二、最大值与最小值问题(153)
习题2 10(157)
第十一节 曲线的曲率
一、平面曲线的曲率概念(159) 二、曲率公式(160) 习题2 u(164)
*第十二节 一元函数微分学在经济中的应用
总习题二

第三章 一元函数积分学
第一节 不定积分的概念及其性质
一、原函数和不定积分的概念(172) 二、基本积分表(174)
三、不定积分的性质(175) 习题3 l(177)
第二节 不定积分的换元积分法
一、不定积分的第一类换元法(177) 二、不定积分的第二类换元法(182)
习题3-2(185)
第三节 不定积分的分部积分法
习题3-3(189)
第四节 有理函数的不定积分
习题3 4(195)
第五节 定积分
一、定积分问题举例(195) 二、定积分的定义(198)
三、定积分的性质(201) 习题3 5(205)
第六节 微积分基本定理
一、积分上限的函数及其导数(206) 二、牛顿-莱布尼茨公式(207)
习题3 6(212)
第七节 定积分的换元法与分部积分法
一、定积分的换元法(213) 二、定积分的分部积分法(218)
习题3-7(220)
第八节 定积分的几何应用举例
一、平面图形的面积(222) 二、体积(227) 三、平面曲线的弧长(230)
习题3 8(236)
第九节 定积分的物理应用举例
一、作功(237) 二、水压力(239) 三、引力(240) 习题3-9(241)
第十节 平均值
一、函数的算术乎均值(242) 二、函数的加权乎均值(243)
三、函数的均方根平均值(244) 习题3-10(245)
第十一节 反常积分
一、无穷限的反常积分(246) 二、无界函数的反常积分(249)
*三、厂函数(252) 习题3-11(254)
总习题三

第四章 微分方程
第一节 微分方程的基本概念
习题4-1(263)
第二节 可分离变量的微分方程
习题4-2(270)
第三节 一阶线性微分方程
习题4-3(275)
第四节 可用变量代换法求解的一阶微分方程
一、齐次型方程(275) *二、可化为齐次型的方程(278)
*三、伯努利方程(280) 习题4-4(、281)
第五节 可降阶的二阶微分方程
一、y"=f(x)型的微分方程(282) 二、y"=f(J,y')型的微分
方程(282) 三、y"=f(y,y')型的微分方程(283)
四、可降阶二阶微分方程的应用举例(284) 习题4 5(288)
第六节 线性微分方程解的结构
习题4-6(292)
第七节 二阶常系数线性微分方程
一、二阶常系数齐次线性微分方程(293) 二、二阶常系数非齐次线性
微分方程(297) 三、二阶常系数线性微分方程的应用举例(301)
习题4-7(307)
*第八节 高阶变系数线性微分方程解法举例
一、解二阶变系数线性微分方程的常数变易法(308) 二、解欧拉方程的指数代换法(309)
习题4-8(310)
总习题四
实验
实验1 数列极限与生长模型
实验2 泰勒公式与函数逼近
实验3 方程近似解的求法
实验4 定积分的近似计算
附录
附录一 数学软件Mathcmatica简介
附录二 几种常用的曲线
习题答案与提示
记号说明
微积分(上册)(第3版)/面向21世纪课程教材 下载 mobi epub pdf txt 电子书 格式

微积分(上册)(第3版)/面向21世纪课程教材 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

微积分(上册)(第3版)/面向21世纪课程教材 下载 mobi pdf epub txt 电子书 格式 2024

微积分(上册)(第3版)/面向21世纪课程教材 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

正品物流很快

评分

正版书,超赞

评分

害人的微积分让我学了一天绣一点

评分

买来辅助学习数学的,内容不错。

评分

正是需要的书。

评分

也不知道为什么买,反正就是买了,没看。

评分

很好的书。。。。。。。。

评分

重新学习微积分,脑子飞速转起来

评分

自己选的 自然满意 慢慢看吧

类似图书 点击查看全场最低价

微积分(上册)(第3版)/面向21世纪课程教材 mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有