多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation]

多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[荷] 杜斯特马特 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-15

类似图书 点击查看全场最低价

图书介绍

出版社: 世界图书出版公司
ISBN:9787510004520
版次:1
商品编码:10762373
包装:平装
外文名称:Multidimensional Real Analysis I Differentiation
开本:24开
出版时间:2009-08-01
用纸:胶版纸
页数:422
正文语种:英文


相关图书





图书描述

内容简介

This book, which is in two parts, provides an introduction to the theory of vector- valued functions on Euclidean space. We focus on four main objects of study and in addition consider the interactions between these. Volume I is devoted to differentiation. Differentiable functions on Rn come first, in Chapters 1 through 3. Next, differentiable manifolds embedded in R are discussed, in Chapters 4 and 5. In Volume 11 we take up integration. Chapter 6 deals with the theory of n-dimensional integration over R. Finally, in Chapters 7 and 8 lower-dimensional integration over submanifolds of Rn is developed; particular attention is paid to vector analysis and the theory of differential forms, which are treated independently from each other. Generally speaking, the emphasis is on geometric aspects of analysis rather than on matters belonging to functional analysis.

内页插图

目录

Volume Ⅰ
Preface
Acknowledgments
Introduction
1 Continuity
1.1 Inner product and norm
1.2 Open and closed sets
1.3 Limits and continuous mappings
1.4 Composition of mappings
1.5 Homeomorphisms
1.6 Completeness
1.7 Contractions
1.8 Compactness and uniform continuity
1.9 Connectedness

2 Differentiation
2.1 Linear mappings
2.2 Differentiable mappings
2.3 Directional and partial derivatives
2.4 Chain rule
2.5 Mean Value Theorem
2.6 Gradient
2.7 Higher-order derivatives
2.8 Taylor's formula
2.9 Critical points
2.10Commuting limit operations

3 Inverse Function and Implicit Function Theorems
3.1 Diffeomorphisms
3.2 Inverse Function Theorems
3.3 Applications oflnverse Function Theorems
3.4 Implicitly defined mappings
3.5 Implicit Function Theorem
3.6 Applications of the Implicit Function Theorem
3.7 Implicit and Inverse Function Theorems on C

4 Manifolds
4.1 Introductory remarks
4.2 Manifolds
4.3 Immersion Theorem
4.4 Examples of immersions
4.5 Submersion Theorem
4.6 Examples of submersions
4.7 Equivalent definitions of manifold
4.8 Morse's Lemma

5 Tangent Spaces
5.1 Definition of tangent space
5.2 Tangent mapping
5.3 Examples of tangent spaces
5.4 Method of Lagrange multipliers
5.5 Applications of the method of multipliers
5.6 Closer investigation of critical points
5.7 Gaussian curvature of surface
5.8 Curvature and torsion of curve in R3
5.9 One-parameter groups and infinitesimal generators
5.10 Linear Lie groups and their Lie algebras
5.11 Transversality
Exercises
Review Exercises
Exercises for Chapter 1
Exercises for Chapter 2
Exercises for Chapter 3
Exercises for Chapter 4
Exercises for Chapter 5
Notation
Index
Volume Ⅱ
Preface
Acknowledgments
Introduction

6 Integration
6.1 Rectangles
6.2 Riemann integrability
6.3Jordan measurability
6.4 Successive integration
6.5 Examples of successive integration
6.6 Change of Variables Theorem: formulation and examples
6.7 Partitions of unity
6.8 Approximation of Riemann integrable functions
6.9 Proof of Change of Variables Theorem
6.10 Absolute Riemann integrability
6.11 Application of integration: Fourier transformation
6.12 Dominated convergence
6.13 Appendix: two other proofs of Change of Variables Theorem

7 Integration over Submanifolds
7.1 Densities and integration with respect to density
7.2 Absolute Riemann integrability with respect to density
7.3 Euclidean d-dimensional density
7.4 Examples of Euclidean densities
7.5 Open sets at one side of their boundary
7.6 Integration of a total derivative
7.7 Generalizations of the preceding theorem
7.8 Gauss' Divergence Theorem
7.9 Applications of Gauss' Divergence Theorem

8 Oriented Integration
8.1 Line integrals and properties of vector fields
8.2 Antidifferentiation
8.3 Green's and Cauchy's Integral Theorems
8.4 Stokes' Integral Theorem
8.5 Applications of Stokes' Integral Theorem
8.6 Apotheosis: differential forms and Stokes' Theorem .
8.7 Properties of differential forms
8.8 Applications of differential forms
8.9 Homotopy Lemma
8.10 Poincare's Lemma
8.11 Degree of mapping
Exercises
Exercises for Chapter 6
Exercises for Chapter 7
Exercises for Chapter 8
Notation
Index

前言/序言



多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] 下载 mobi epub pdf txt 电子书 格式

多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] 下载 mobi pdf epub txt 电子书 格式 2025

多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

多维实分析(第1卷) [Multidimensional Real Analysis I Differentiation] mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有