离散曲面的变分原理(英文版)

离散曲面的变分原理(英文版) 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
罗锋 等 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-19

类似图书 点击查看全场最低价

图书介绍

出版社: 高等教育出版社
ISBN:9787040231946
版次:1
商品编码:10664767
包装:平装
开本:16开
出版时间:2008-01-01
用纸:胶版纸
页数:130
正文语种:英文


相关图书





图书描述

编辑推荐

The launch of this Advanced Lectures in Mathematics series is aimed at keepingmathematicians informed of the latest developments in mathematics, as well asto aid in the learning of new mathematical topics by students all over the world.Each volume consists of either an expository monograph or a collection of signifi-cant introductions to important topics. This series emphasizes the history andsources of motivation for the topics under discussion, and also gives an overviewof the current status of research in each particular field. These volumes are thefirst source to which people will turn in order to learn new subjects and to dis-cover the latest results of many cutting-edge fields in mathematics.

内容简介

This book intends to lead its readers to some of the current topics of research in the geometry of polyhedral surfaces with applications to computer graphics. The main feature of the book is a systematic introduction to geometry of polyhedral surfaces based on the variational principle. The authors focus on using analytic methods in the study of some of the fundamental results and problems on polyhedral geometry, e. g., the Cauchy rigidity theorem, Thurston's circle packing theorem, rigidity of circle packing theorems and Colin de Verdiere's variational principle. With the vast development of the mathematics subject of polyhedral geometry, the present book is the first complete treatment of the subject.

目录

1 Introduction
1.1 Variational Principle and Isoperimetric Problems
1.2 Polyhedral Metrics and Polyhedral Surfaces
1.3 A Brief History on Geometry of Polyhedral Surface
1.4 Recent Works on Polyhedral Surfaces
1.5 Some of Our Results
1.6 The Method of Proofs and Related Works
2 Spherical Geometry and Cauchy Rigidity Theorem
2.1 Spherical Geometry and Spherical Triangles
2.2 The Cosine law and the Spherical Dual
2.3 The Cauchy Rigidity Theorem
3 A Brief Introduction to Hyperbolic Geometry
3.1 The Hyperboloid Model of the Hyperbolic Geometry
3.2 The Klein Model of Hn
3.3 The Upper Half Space Model of Hn
3.4 The Poincar6 Disc Model Bn of Hn
3.5 The Hyperbolic Cosine Law and the Gauss-Bonnet Formula
4 The Cosine Law and Polyhedral Surfaces
4.1 Introduction
4.2 Polyhedral Surfaces and Action Functional of Variational Framework
5 Spherical Polyhedral Surfaces and Legendre Transformation
5.1 The Space of All Spherical Triangles
5.2 A Rigidity Theorem for Spherical Polyhedral Surfaces
5.3 The Legendre Transform
5.4 The Cosine Law for Euclidean Triangles
6 Rigidity of Euclidean Polyhedral Surfaces
6.1 A Local and a Global Rigidity Theorem
6.2 Rivin's Theorem on Global Rigidity of Curvature
7 Polyhedral Surfaces of Circle Packing Type
7.1 Introduction
7.2 The Cosine Law and the Radius Parametrization
7.3 Colin de Verdiere's Proof of Thurston-Andreev Rigidity Theorem
7.4 AProofofLeibon's Theorem
7.5 A Sketch of a Proof of Theorem 73(c)
7.6 Marden-Rodin's Proof Thurston-Andreev Theorem
8 Non-negative Curvature metrics and Delaunay Polytopes
8.1 Non-negative and Curvature Metrics and Delaunay Condition ..
8.2 Relationship between, Curvature and the Discrete Curvature ko
8.3 The work of Rivin and Leibon on Delaunay Polyhedral Surfaces
9 A Brief Introduction to Teichmiiller Space
9.1 Introduction
9.2 Hyperbolic Hexagons, Hyperbolic 3-holed Spheres and the Cosine law
9.3 Ideal Triangulation of Surfaces and the Length Coordinate of the Teichmuller Spaces
9.4 New Coordinates for the Teichmuller Space
10 Parameterizatios of Teichmuller spaces
10.1 A Proof of Theorem 10.1
10.2 Degenerations of Hyperbolic Hexagons
10.3 A Proof of Theorem 10.2
11 Surface Ricci Flow
11.1 Conformal Deformation
11.2 Surface Ricci Flow
12 Geometric Structure
12.1 (X, G) Geometric Structure
12.2 Affine Structures on Surfaces
12.3 Spherical Structure
12.4 Euclidean Structure
12.5 Hyperbolic Structure
12.6 Real Projective Structure
13 Shape Acquisition and Representation
13.1 Shape Acquisition
13.2 Triangular Meshes
13.3 Half-Edge Data Structure
14 Discrete Ricci Flow
14.1 Circle Packing Metric
14.2 Discrete Gaussian Curvature
14.3 Discrete Surface Ricci Flow
14.4 Newton's Method
14.5 Isometric Planar Embedding
14.6 Surfaces with Boundaries
14.7 Optimal Parameterization Using Ricci flow
15 Hyperbolic Ricci Flow
15.1 Hyperbolic Embedding
15.1.1 Embedding One Face
15.1.2 Hyperbolic Embedding of the Universal Covering Space
15.2 Surfaces with Boundaries
Reference
Index

离散曲面的变分原理(英文版) 下载 mobi epub pdf txt 电子书 格式

离散曲面的变分原理(英文版) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

离散曲面的变分原理(英文版) 下载 mobi pdf epub txt 电子书 格式 2024

离散曲面的变分原理(英文版) 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

大品牌 还是相当靠谱的 质量可靠

评分

值得一读,导师推荐的

评分

用代数几何工具解决网格曲面问题的比较权威的书,作者们是这个领域的开拓者。但对代数几何不熟悉的读者来说,这未必是一本好书,作者写的不浅显,给人很深噢的感觉。

评分

用代数几何工具解决网格曲面问题的比较权威的书,作者们是这个领域的开拓者。但对代数几何不熟悉的读者来说,这未必是一本好书,作者写的不浅显,给人很深噢的感觉。

评分

不错的书,希望能看懂,专业书籍。

评分

用代数几何工具解决网格曲面问题的比较权威的书,作者们是这个领域的开拓者。但对代数几何不熟悉的读者来说,这未必是一本好书,作者写的不浅显,给人很深噢的感觉。

评分

大品牌 还是相当靠谱的 质量可靠

评分

大批量买书,网购送货快,还不用费体力,不用去书店了。

评分

用代数几何工具解决网格曲面问题的比较权威的书,作者们是这个领域的开拓者。但对代数几何不熟悉的读者来说,这未必是一本好书,作者写的不浅显,给人很深噢的感觉。

类似图书 点击查看全场最低价

离散曲面的变分原理(英文版) mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有