这本《高中数学竞赛专题讲座:平面几何解题思想与策略》的出现,无疑是一场及时雨,正当我为如何系统性地提升平面几何解题能力而苦恼时,它便如期而至。我原本以为会是一本枯燥乏味的定理汇编或者习题集,但事实证明,我的担忧是多余的。这本书最大的亮点在于它独辟蹊径,将重点放在了“解题思想”和“策略”上,这恰恰是我最需要的部分。作者通过大量的实例,深入浅出地阐述了多种经典的几何解题思路,例如,在讲解“燕尾定理”的应用时,他不仅给出了定理的证明,更重要的是,分析了在什么样的情况下可以联想到使用燕尾定理,以及如何通过对图形的分析来“发现”符合燕尾定理的条件。这种“点拨式”的教学方式,比单纯的知识灌输更为有效。书中对于“旋转不变性”、“对称性”等抽象概念的讲解,也运用了非常巧妙的图示和类比,让我能够更直观地理解这些概念在解题中的妙用。我尤其赞赏书中关于“反证法”在几何证明中的应用分析,这是一种我之前很少接触到的解题思路,在这本书的引导下,我开始尝试运用反证法来解决一些看似难以直接证明的问题,并取得了意想不到的效果。阅读这本书的过程,就像是在与一位经验丰富的几何大师对话,学习他深厚的解题功力。
评分我是一名对数学竞赛充满热情的高中生,在接触《高中数学竞赛专题讲座:平面几何解题思想与策略》之前,我对平面几何的理解可以说是一知半解,遇到稍微复杂一点的题目就显得力不从心。这本书的出现,无疑是我数学学习旅途中的一个重要里程碑。它并没有给我提供现成的“答案”,而是教会了我如何去“找答案”。我非常欣赏作者在讲解不同几何专题时的切入点,他总是能从最基本的概念出发,然后逐步引导读者去发现更深层次的规律和技巧。例如,在讲解“三角形内切圆与外接圆”的性质时,他不是简单地给出公式,而是通过对图形的细致分析,展示了如何通过“点线面”的转化,将复杂的计算转化为简单的几何关系。更让我惊喜的是,书中还涉及了一些关于“共点”、“共线”等问题的证明思路,这对于解决一些看起来非常规的题目非常有帮助。我特别喜欢书中“化繁为简”的解题策略,它教会我如何通过引入适当的辅助元素,将一个复杂的问题分解成若干个更易于处理的小问题,从而层层递进,最终找到问题的答案。阅读这本书,我感觉自己的几何思维能力得到了质的飞跃。
评分坦白说,《高中数学竞赛专题讲座:平面几何解题思想与策略》这本书,在众多数学辅导书中,显得尤为独特和珍贵。它不像一些教材那样,上来就堆砌复杂的公式和证明,而是非常有意识地引导读者去思考“为什么”和“怎么做”。我曾一度认为平面几何的解题就是一套固定的流程,但这本书彻底颠覆了我的认知。它让我明白,很多时候,解题的关键在于观察、分析和联想,以及如何灵活运用各种几何工具。书中关于“角平分线与中线性质的综合运用”的章节,令我印象深刻。作者通过对几个典型例题的拆解,层层深入地分析了如何根据题目中给出的已知条件,逐步构建出解题的逻辑链条,并在其中巧妙地融入了多种几何定理。让我觉得特别受用的是,书中提到了“类比法”在几何猜想中的作用,虽然这并非直接的解题技巧,但对于培养几何直觉和发现隐藏的性质非常有帮助。此外,书中还花了相当大的篇幅来讨论“图形的动态分析”,比如当图形中的某些元素发生变化时,结论是否依然成立,以及如何通过分析这些变化来找到不变的性质,这对于处理一些参数化的题目非常有启发。总的来说,这本书不仅教会了我如何解题,更重要的是,它培养了我独立思考和探索几何问题的能力。
评分作为一名长期关注高中数学竞赛的家长,我一直在寻找一本能够真正帮助孩子提升平面几何解题能力的书籍。《高中数学竞赛专题讲座:平面几何解题思想与策略》这本书,绝对是我的不二之选。我仔细翻阅了内容,发现它最大的特点在于其“思想性”和“策略性”。它不像市面上一些充斥着大量公式和例题的教辅,而是更加注重引导孩子理解几何问题的本质,以及如何运用不同的思维方式去解决问题。书中关于“利用已知条件反推”的章节,让我眼前一亮。它教会孩子如何从题目所给的条件出发,一步步推导出可能存在的结论,而不是被动地等待题目给出线索。这种主动探索式的解题方法,对于培养孩子的独立思考能力非常有益。此外,书中对于“几何变换”在解题中的应用,也有着非常独到的见解。通过对图形的平移、旋转、对称等变换,能够发现隐藏的几何关系,从而简化解题过程。我特别欣赏书中“化归思想”的运用,它教会孩子如何将一个难以直接解决的问题,转化为一个已知的问题,或者一个更简单的问题,从而找到突破口。这本书,不仅为孩子提供了解决平面几何问题的“方法论”,更重要的是,它激发了孩子对数学的兴趣和探索精神。
评分这本书简直是为我量身打造的!我一直对平面几何的证明题感到头疼,总觉得解题思路飘忽不定,即使掌握了一些基本定理,遇到复杂的题目也束手无策。这本《高中数学竞赛专题讲座:平面几何解题思想与策略》就像一盏明灯,照亮了我前行的道路。它没有直接罗列大量的习题和公式,而是着重于讲解解题背后的“思想”和“策略”。作者用非常生动形象的比喻,将抽象的几何概念具象化,比如在讲解相似三角形的运用时,不是简单地给出判定定理,而是深入剖析了如何通过“放大缩小”、“旋转平移”等直观的手段来找到相似的图形。更让我惊喜的是,书中对于一些经典几何题的解法,并非只有一种标准答案,而是展示了多种不同的思路,从不同角度去分析问题,这让我意识到,数学解题并非死板的套用,而是充满创造力的过程。我特别喜欢其中关于“构造法”的章节,它教会我如何在看似无关的图形中巧妙地添加辅助线,从而打开解题的突破口。以前总觉得辅助线是凭空出现的,看完这部分内容,才明白原来辅助线的添加是有章可循,背后蕴含着深刻的几何直觉。总而言之,这本书极大地提升了我对平面几何的理解深度和解题的信心,绝对是备赛高中数学竞赛必备的宝藏。
评分以知道其中的道理了;读书可以使自己的知识得到积累,君子学以聚之。总之,爱好读书是好事。 让我们都来读书吧.
评分质量还可以,虽然等货几天,还会再来
评分为此,研究者把解决平面解析几何问题的思维过程划分为几个阶段,运用
评分[ZZ]写的的书都写得很好,[sm]还是朋友推荐我看的,后来就非非常喜欢,他的书了。除了他的书,我和我家小孩还喜欢看郑渊洁、杨红樱、黄晓阳、小桥老树、王永杰、杨其铎、晓玲叮当、方洲,他们的书我觉得都写得很好。[SM],很值得看,价格也非常便宜,比实体店买便宜好多还省车费。 书的内容直得一读[BJTJ],阅读了一下,写得很好,[NRJJ],内容也很丰富。[QY],一本书多读几次,[SZ]。 快递送货也很快。还送货上楼。非常好。 [SM],超值。买书就来来京东商城。价格还比别家便宜,还免邮费不错,速度还真是快而且都是正版书。[BJTJ],买回来觉得还是非常值的。我喜欢看书,喜欢看各种各样的书,看的很杂,文学名著,流行小说都看,只要作者的文笔不是太差,总能让我从头到脚看完整本书。只不过很多时候是当成故事来看,看完了感叹一番也就丢下了。所在来这里买书是非常明智的。然而,目前社会上还有许多人被一些价值不大的东西所束缚,却自得其乐,还觉得很满足。经过几百年的探索和发展,人们对物质需求已不再迫切,但对于精神自由的需求却无端被抹杀了。总之,我认为现代人最缺乏的就是一种开阔进取,寻找最大自由的精神。 中国人讲“虚实相生,天人合一”的思想,“于空寂处见流行,于流行处见空寂”,从而获得对于“道”的体悟,“唯道集虚”。这在传统的艺术中得到了充分的体现,因此中国古代的绘画,提倡“留白”、“布白”,用空白来表现丰富多彩的想象空间和广博深广的人生意味,体现了包纳万物、吞吐一切的胸襟和情怀。让我得到了一种生活情趣和审美方式,伴着笔墨的清香,细细体味,那自由孤寂的灵魂,高尚清真的人格魅力,在寻求美的道路上指引着我,让我抛弃浮躁的世俗,向美学丛林的深处迈进。合上书,闭上眼,书的余香犹存,而我脑海里浮现的,是一个“皎皎明月,仙仙白云,鸿雁高翔,缀叶如雨”的冲淡清幽境界。愿我们身边多一些主教般光明的使者,有更多人能加入到助人为乐、见义勇为的队伍中来。社会需要这样的人,世界需要这样的人,只有这样我们才能创造我们的生活,[NRJJ]希望下次还呢继续购买这里的书籍,这里的书籍很好,非常的不错,。给我带来了不错的现实享受。希望下次还呢继续购买这里的书籍,这里的书籍很好,非常的不错,。给我带来了不错的现实享受。
评分重点中学重点班学生培训用,难度适中
评分(9H4%好评)
评分数学竞赛作为一项智力活动,吸引了无数数学爱好者积极参与,也为那些对数学有浓厚兴趣和有数学天赋的学生提供一个展示自我的平台,是发现和培养数学人才的一条有效渠道。我们欣喜地看到,通过这项活动,发现了一批数学苗子,培养了一批数学人才。许多参与竞赛的优秀选手后来都成了杰出的数学家。
评分看起来是正版,挺好的
评分1.4
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有