丘老师的书,配合视频看
评分本书以现代数学和信息时代有重要应用的数学知识和数学发展史上若干重要创新为载体,从同学们熟悉的整数、多项式出发,讲述整数环、一元多项式环的结构;从“星期”这一司空见惯的现象引出集合的划分、等价关系和模m剩余类的概念,进而研究模m剩余类环的结构;从信息时代为了确保信息安全引出序列密码和公开密钥密码,以及数字签名;从数学发展史上选出三个重大创新进行阐述,它们是:从对运动的研究到微积分的创立和严密化,从平行公设到非欧几里得几何的诞生与实现;从方程的根式可解问题到伽罗瓦理论
评分出版著作38部,发表教学研究论文22篇,译著(合译)6部。他编写的具有代表性的优秀教材有:《高等代数(上、下册)——大学高等代数课程创新教材》(清华大学出版社,2010),《高等代数(第二版)(上、下册)》(高等教育出版社,2003),《简明线性代数》(北京大学出版社,2002),《解析几何(第二版)》(北京大学出版社,1996),《抽象代数基础》(高等教育出版社,2003),《有限群和紧群的表示论》(北京大学出版社,1997)等。
评分京东物流一如既往的快,书的包装完整。赞一个!
评分丘老师的书,配合视频看
评分《有限群表示论(第2版)》旨在介绍有限群的表示理论,其中包括群表示论的基本概念与两条主要研究途径的介绍。书的前八章介绍有限群的常表示理论(即在特征数不整除群的阶数的域上的表示,具有完全可约性),着重论述了与群的诱导表示有关的一些经典结果,同时也探讨了域的选取与群表示分解之间的关系。后四章介绍有限群模表示的Brauer理论(即在特征数整除群的阶数的域上的表示,一般不具备完全可约性),该理论通过p模系统将有限群G在特征零域上的表示理论与特征p(这里pG)域上的表示理论联系起来;也将G在特征零域上的特征标理论与G的p局部结构联系起来。《有限群表示论(第2版)》为求自成系统,在第一章用较大篇幅简要地叙述了与群表示论有关的一些预备知识,特别是介绍了有限维代数的结构与表示理论。《有限群表示论(第2版)》每节后都附有足够多的习题帮助读者理解与拓广正文的内容。这套丛书还有 《偏微分方程》,《可靠性数学引论》,《矩阵计算六讲》,《复变函数专题选讲》,《应用偏微分方程讲义》 等。《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。
评分好像给出了完整的伽罗瓦理论,读起来还是蛮有味道的
评分书本保护的很好,内容是正版。
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有