金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition]

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
郭宇權 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-17

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 世界圖書齣版公司
ISBN:9787510005503
版次:1
商品編碼:10104519
包裝:平裝
外文名稱:Mathematical Models of Financial Derivatives Second Edition
開本:24開
齣版時間:2010-04-01
用紙:膠版紙
頁數:530
正文語種:英語


相關圖書





圖書描述

內容簡介

《金融衍生品數學模型(第2版)》旨在運用金融工程方法講述模型衍生品背後的理論,作為重點介紹瞭對大多數衍生證券很常用的鞅定價原理。書中還分析瞭固定收入市場中的大量金融衍生品,強調瞭定價、對衝及其風險策略。《金融衍生品數學模型(第2版)》從著名的期權定價模型的Black-Scholes-Merton公式開始,講述衍生品定價模型和利率模型中的最新進展,解決各種形式衍生品定價問題的解析技巧和數值方法。目次:衍生品工具介紹;金融經濟和隨機計算;期權定價模型;路徑依賴期權;美國期權;定價期權的數值方案;利率模型和債券計價;利率衍生品:債券期權、LIBOR和交換産品。

內頁插圖

目錄

Preface
1 Introduction to Derivative Instruments
1.1 Financial Options and Their Trading Strategies
1.1.1 Trading Strategies Involving Options
1.2 Rational Boundaries for Option Values
1.2.1 Effects of Dividend Payments
1.2.2 Put-Call Parity Relations
1.2.3 Foreign Currency Options
1.3 Forward and Futures Contracts
1.3.1 Values and Prices of Forward Contracts
1.3.2 Relation between Forward and Futures Prices
1.4 Swap Contracts
1.4.1 Interest Rate Swaps
1.4.2 Currency Swaps
1.5 Problems

2 Financial Economics and Stochastic Calculus
2.1 Single Period Securities Models
2.1.1 Dominant Trading Strategies and Linear Pricing Measures
2.1.2 Arbitrage Opportunities and Risk Neutral Probability Measures
2.1.3 Valuation of Contingent Claims
2.1.4 Principles of Binomial Option Pricing Model
2.2 Filtrations, Martingales and Multiperiod Models
2.2.1 Information Structures and Filtrations
2.2.2 Conditional Expectations and Martingales
2.2.3 Stopping Times and Stopped Processes
2.2.4 Multiperiod Securities Models
2.2.5 Multiperiod Binomial Models
2.3 Asset Price Dynamics and Stochastic Processes
2.3.1 Random Walk Models
2.3.2 Brownian Processes
2.4 Stochastic Calculus: Itos Lemma and Girsanovs Theorem
2.4.1 Stochastic Integrals
2.4.2 Itos Lemma and Stochastic Differentials
2.4.3 Itos Processes and Feynman-Kac Representation Formula
2.4.4 Change of Measure: Radon-Nikodym Derivative and Girsanovs Theorem.
2.5 Problems

3 Option Pricing Models: Blaek-Scholes-Merton Formulation
3.1 Black-Scholes-Merton Formulation
3.1.1 Riskless Hedging Principle
3.1.2 Dynamic Replication Strategy
3.1.3 Risk Neutrality Argument
3.2 Martingale Pricing Theory
3.2.1 Equivalent Martingale Measure and Risk Neutral Valuation
3.2.2 Black-Scholes Model Revisited
3.3 Black-Scholes Pricing Formulas and Their Properties
3.3.1 Pricing Formulas for European Options
3.3.2 Comparative Statics
3.4 Extended Option Pricing Models
3.4.1 Options on a Dividend-Paying Asset
3.4.2 Futures Options
3.4.3 Chooser Options
3.4.4 Compound Options
3.4.5 Mertons Model of Risky Debts
3.4.6 Exchange Options
3.4.7 Equity Options with Exchange Rate Risk Exposure
3.5 Beyond the Black-Scholes Pricing Framework
3.5.1 Transaction Costs Models
3.5.2 Jump-Diffusion Models
3.5.3 Implied and Local Volatilities
3.5.4 Stochastic Volatility Models
3.6 Problems

4 Path Dependent Options
4.1 Barrier Options
4.1.1 European Down-and-Out Call Options
4.1.2 Transition Density Function and First Passage Time Density
4.1.3 Options with Double Barriers
4.1.4 Discretely Monitored Barrier Options
4.2 Lookback Options
4.2.1 European Fixed Strike Lookback Options
4.2.2 European Floating Strike Lookback Options
4.2.3 More Exotic Forms of European Lookback Options
4.2.4 Differential Equation Formulation
4.2.5 Discretely Monitored Lookback Options
4.3 Asian Options.
4.3.1 Partial Differential Equation Formulation
4.3.2 Continuously Monitored Geometric Averaging Options
4.3.3 Continuously Monitored Arithmetic Averaging Options
4.3.4 Put-Call Parity and Fixed-Floating Symmetry Relations
4.3.5 Fixed Strike Options with Discrete Geometric Averaging
4.3.6 Fixed Strike Options with Discrete Arithmetic Averaging
4.4 Problems

5 American Options
5.1 Characterization of the Optimal Exercise Boundaries
5.1.1 American Options on an Asset Paying Dividend Yield
5.1.2 Smooth Pasting Condition.
5.1.3 Optimal Exercise Boundary for an American Call
5.1.4 Put-Call Symmetry Relations.
5.1.5 American Call Options on an Asset Paying Single Dividend
5.1.6 One-Dividend and Multidividend American Put Options
5.2 Pricing Formulations of American Option Pricing Models
5.2.1 Linear Complementarity Formulation
5.2.2 Optimal Stopping Problem
5.2.3 Integral Representation of the Early Exercise Premium
5.2.4 American Barrier Options
5.2.5 American Lookback Options
5.3 Analytic Approximation Methods
5.3.1 Compound Option Approximation Method
5.3.2 Numerical Solution of the Integral Equation
5.3.3 Quadratic Approximation Method
5.4 Options with Voluntary Reset Rights
5.4.1 Valuation of the Shout Floor
5.4.2 Reset-Strike Put Options
5.5 Problems

6 Numerical Schemes for Pricing Options
6.1 Lattice Tree Methods
6.1.1 Binomial Model Revisited
6.1.2 Continuous Limits of the Binomial Model
6.1.3 Discrete Dividend Models
6.1.4 Early Exercise Feature and Callable Feature
6.1.5 Trinomial Schemes
6.1.6 Forward Shooting Grid Methods
6.2 Finite Difference Algorithms
6.2.1 Construction of Explicit Schemes
6.2.2 Implicit Schemes and Their Implementation Issues
6.2.3 Front Fixing Method and Point Relaxation Technique
6.2.4 Truncation Errors and Order of Convergence
6.2.5 Numerical Stability and Oscillation Phenomena
6.2.6 Numerical Approximation of Auxiliary Conditions
6.3 Monte Carlo Simulation
6.3.1 Variance Reduction Techniques
6.3.2 Low Discrepancy Sequences
6.3.3 Valuation of American Options
6.4 Problems

7 Interest Rate Models and Bond Pricing
7.1 Bond Prices and Interest Rates
7.1.1 Bond Prices and Yield Curves
7.1.2 Forward Rate Agreement, Bond Forward and Vanilla Swap
7.1.3 Forward Rates and Short Rates
7.1.4 Bond Prices under Deterministic Interest Rates
7.2 One-Factor Short Rate Models
7.2.1 Short Rate Models and Bond Prices
7.2.2 Vasicek Mean Reversion Model
7.2.3 Cox-Ingersoll-Ross Square Root Diffusion Model
7.2.4 Generalized One-Factor Short Rate Models
7.2.5 Calibration to Current Term Structures of Bond Prices
7.3 Multifactor Interest Rate Models
7.3.1 Short Rate/Long Rate Models
7.3.2 Stochastic Volatility Models
7.3.3 Affine Term Structure Models
7.4 Heath-Jarrow-Morton Framework
7.4.1 Forward Rate Drift Condition
7.4.2 Short Rate Processes and Theft Markovian Characterization
7.4.3 Forward LIBOR Processes under Ganssian HIM Framework
7.5 Problems

8 Interest Rate Derivatives: Bond Options, LIBOR and Swap Products
8.1 Forward Measure and Dynamics of Forward Prices
8.1.1 Forward Measure
8.1.2 Pricing of Equity Options under Stochastic Interest Rates
8.1.3 Futures Process and Futures-Forward Price Spreadi
8.2 Bond Options and Range Notes
8.2.1 Options on Discount Bonds and Coupon-Bearing Bonds
8.2.2 Range Notes
8.3 Caps and LIBOR Market Models
8.3.1 Pricing of Caps under Gaussian HJM Framework
8.3.2 Black Formulas and LIBOR Market Models
8.4 Swap Products and Swaptions
8.4.1Forward Swap Rates and Swap Measure
8.4.2 Approximate Pricing of Swaption under Lognormal LIBOR Market Model
8.4.3 Cross-Currency Swaps
8.5 Problems
References
Author Index
Subject Index

前言/序言

  In the past three decades, we have witnessed the phenomenal growth in the trading of financial derivatives and structured products in the financial markets around the globe and the surge in research on derivative pricing theory,cading financial institutions are hiring graduates with a science background who can use advanced analyrical and numerical techniques to price financial derivatives and manage portfolio risks, a phenomenon coined as Rocket Science on Wall Street. There are now more than a hundred Master level degreed programs in Financial Engineering/Quantitative Finance/Computational Finance in different continents. This book is written as an introductory textbook on derivative pricing theory for students enrolled in these degree programs. Another audience of the book may include practitioners in quantitative teams in financial institutions who would like to acquire the knowledge of option pricing techniques and explore the new development in pricing models of exotic structured derivatives. The level of mathematics in this book is tailored to readers with preparation at the advanced undergraduate level of science and engineering majors, in particular, basic proficiencies in probability and statistics, differential equations, numerical methods, and mathematical analysis. Advance knowledge in stochastic processes that are relevant to the martingale pricing theory, like stochastic differential calculus and theory of martingale, are 金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] 下載 mobi epub pdf txt 電子書 格式

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] 下載 mobi pdf epub txt 電子書 格式 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

金融衍生産品

評分

(2)根據原生資産分類,即股票、利率、匯率和商品。如果再加以細分,股票類中又包括具體的股票(股票期貨、股票期權閤約)和由股票組閤形成的股票指數期貨和期權閤約等;利率類中又可分為以短期存款利率為代錶的短期利率(如利率期貨、利率遠期、利率期權、利率互換閤約)和以長期債券利率為代錶的長期利率(如債券期貨、債券期權閤約);貨幣類中包括各種不同幣種之間的比值;商品類中包括各類大宗實物商品。

評分

即閤約交易的雙方(在標準化閤約中由於可以交易是不確定的)盈虧完全負相關,並且淨損益為零,因此稱"零和"。

評分

講的很透徹 深入淺齣 和一般教材有本質區彆

評分

不錯不錯,還行,還行

評分

至於金融衍生産品的種類,在國際上是非常多的,而且由於金融創新活動的不斷推齣新品種,屬於這個範疇的東西也越來越多。從基本分類來看,則主要有以下三種分類:

評分

4、不確定性或高風險性

評分

好。。。。。。。。

評分

即閤約交易的雙方(在標準化閤約中由於可以交易是不確定的)盈虧完全負相關,並且淨損益為零,因此稱"零和"。

類似圖書 點擊查看全場最低價

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有