應用泛函分析(第2捲)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications]

應用泛函分析(第2捲)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 下載 mobi epub pdf 電子書 2025

[德] 澤德勒 著
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005459
版次:1
商品編碼:10104517
包裝:平裝
外文名稱:Applied Functional AnalysisMa:In Principles and Their Applications
開本:16開
齣版時間:2009-10-01
用紙:膠版紙
頁數:404
正文語

具體描述

內容簡介

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

內頁插圖

目錄

Preface
Contents of AMS Volume 108
1 The Hahn-Banach Theorem Optimization Problems
1.1 The Hahn-Banach Theorem
1.2 Applications to the Separation of Convex Sets
1.3 The Dual Space C[a, b]*
1.4 Applications to the Moment Problem
1.5 Minimum Norm Problems and Duality Theory
1.6 Applications to Cebysev Approximation
1.7 Applications to the Optimal Control of Rockets
2 Variational Principles and Weak Convergence
2.1 The nth Variation
2.2 Necessary and Sufficient Conditions for Local Extrema and the Classical Calculus of Variations
2.3 The Lack of Compactness in Infinite-Dimensional Banach Spaces
2.4 Weak Convergence
2.5 The Generalized Weierstrass Existence Theorem
2.6 Applications to the Calculus of Variations
2.7 Applications to Nonlinear Eigenvalue Problems
2.8 Reflexive Banach Spaces
2.9 Applications to Convex Minimum Problems and Variational Inequalities
2.10 Applications to Obstacle Problems in Elasticity
2.11 Saddle Points
2.12 Applications to Dui~lity Theory
2.13 The von Neumann Minimax Theorem on the Existence of Saddle Points
2.14 Applications to Game Theory
2.15 The Ekeland Principle about Quasi-Minimal Points
2.16 Applications to a General Minimum Principle via the Palais-Smale Condition
2.17 Applications to the Mountain Pass Theorem
2.18 The Galerkin Menhod and Nonlinear Monotone Operators
2.19 Symmetries and Conservation Laws (The Noether Theorem
2.20 The Basic Ideas of Gauge Field Theory
2.21 Representations of Lie Algebras
2.22 Applications to Elementary Particles
3 Principles of Linear Functional Analysis
3.1 The Baire Theorem
3.2 Application to the Existence of Nondifferentiable Continuous Functions
3.3 The Uniform Boundedness Theorem
3.4 Applications to Cubature Formulas
3.5 The Open Mapping Theorem
3.6 Product Spaces
3.7 The Closed Graph Theorem
3.8 Applications to Factor Spaces
3.9 Applications to Direct Sums and Projections
3.10 Dual Operators
3.11 The Exactness of the Duality Functor
3.12 Applications to the Closed Range Theorem and to Fredholm Alternatives
4 The Implicit Function Theorem
4.1 m-Linear Bounded Operators
4.2 The Differential of Operators and the Fr~chet Derivative
4.3 Applications to Analytic Operators
4.4 Integration
4.5 Applications to the Taylor Theorem
4.6 Iterated Derivatives
4.7 The Chain Rule
4.8 The Implicit Function Theorem
4.9 Applications to Differential Equations
4.10 Diffeomorphisms and the Local Inverse Mapping Theorem
4.11 Equivalent Maps and the Linearization Principle
4.12 The Local Normal Form for Nonlinear Double Splitting Maps
4.13 The Surjective Implicit Function Theorem
4.14 Applications to the Lagrange Multiplier Rule
5 Fredholm Operators
5.1 Duality for Linear Compact Operators
5.2 The Riesz-Schauder Theory on Hilbert Spaces
5.3 Applications to Integral Equations
5.4 Linear Fredholm Operators
5.5 The Riesz-Schauder Theory on Banach Spaces
5.6 Applications to the Spectrum of Linear Compact Operators
5.7 The Parametrix
5.8 Applications to the Perturbation of Fredholm Operators
5.9 Applications to the Product Index Theorem
5.10 Fredholm Alternatives via Dual Pairs
5.11 Applications to Integral Equations and Boundary-Value Problems
5.12 Bifurcation Theory
5.13 Applications to Nonlinear Integral Equations
5.14 Applications to Nonlinear Boundary-Value Problems
5.15 Nonlinear Fredholm Operators
5.16 Interpolation Inequalities
5.17 Applications to the Navier-Stokes Equations References
List of Symbols
List of Theorems
List of Most Important Definitions
Subject Index

前言/序言

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

用戶評價

評分

本書算是一個嘗試

評分

23kslsmk 是多多少少都懂得ksksksks,did,sdssss快點快點快點開

評分

泛函分析是20世紀30年代形成的數學分科,是從變分問題,積分方程和理論物理的研究中發展起來的。它綜閤運用函數論,幾何學,現代數學的觀點來研究無限維嚮量空間上的泛函,算子和極限理論。它可以看作無限維嚮量空間的解析幾何及數學分析。泛函分析在數學物理方程,概率論,計算數學等分科中都有應用,也是研究具有無限個自由度的物理係統的數學工具。

評分

經典的書,講解清晰。

評分

在巴拿赫空間中,相當部分的研究涉及到對偶空間的概念,即巴拿赫空間上所有連續綫性泛函所構成的空間。對偶空間的對偶空間可能與原空間並不同構,但總可以構造一個從巴拿赫空間到其對偶空間的對偶空間的一個單同態。

評分

評分

專業人士使用。。。。。。。。。。

評分

評分

編輯本段

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 圖書大百科 版權所有