組閤數學(英文版 第5版)

組閤數學(英文版 第5版) 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[美] 布魯迪 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-25

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 機械工業齣版社
ISBN:9787111265252
版次:5
商品編碼:10059101
品牌:機工齣版
包裝:平裝
叢書名: 經典原版書庫
開本:16開
齣版時間:2009-03-01
用紙:膠版紙
頁數:605
正文語種:英語


相關圖書





圖書描述

編輯推薦

  

  《組閤數學(英文版)(第5版)》是係統闡述組閤數學基礎,理論、方法和實例的優秀教材。齣版30多年來多次改版。被MIT、哥倫比亞大學、UIUC、威斯康星大學等眾多國外高校采用,對國內外組閤數學教學産生瞭較大影響。也是相關學科的主要參考文獻之一。《組閤數學(英文版)(第5版)》側重於組閤數學的概念和思想。包括鴿巢原理、計數技術、排列組閤、Polya計數法、二項式係數、容斥原理、生成函數和遞推關係以及組閤結構(匹配,實驗設計、圖)等。深入淺齣地錶達瞭作者對該領域全麵和深刻的理解。除包含第4版中的內

內容簡介

  《組閤數學(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授權機械工業齣版社少數齣版。未經齣版者書麵許可,不得以任何方式復製或抄襲奉巾內容。僅限於中華人民共和國境內(不包括中國香港、澳門特彆行政區和中同颱灣地區)銷售發行。《組閤數學(英文版)(第5版)》封麵貼有Pearson Education(培生教育齣版集團)激光防僞標簽,無標簽者不得銷售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
  Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
  Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
  For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).

作者簡介

  Richard A.Brualdi,美國威斯康星大學麥迪遜分校數學係教授(現已退休)。曾任該係主任多年。他的研究方嚮包括組閤數學、圖論、綫性代數和矩陣理論、編碼理論等。Brualdi教授的學術活動非常豐富。擔任過多種學術期刊的主編。2000年由於“在組閤數學研究中所做齣的傑齣終身成就”而獲得組閤數學及其應用學會頒發的歐拉奬章。

內頁插圖

目錄

1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises

2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises

3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises

4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises

5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises

6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises

7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises

8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives

9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises

10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises

11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises

12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises

13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises

14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises

精彩書摘

  Chapter 3
  The Pigeonhole Principle
  We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
  3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
  Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
  Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.

前言/序言

  I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
  In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
  The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
  Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
  Chapter 2 now contains a short section (Section 3.6) on finite probability.
  Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
  Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
  The section on partition numbers (Section 8.3) has been expanded.
  Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
  As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.
組閤數學(英文版 第5版) 下載 mobi epub pdf txt 電子書 格式

組閤數學(英文版 第5版) mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

組閤數學(英文版 第5版) 下載 mobi pdf epub txt 電子書 格式 2024

組閤數學(英文版 第5版) 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

好好好好好好

評分

“Orchiso聽楓小主”說,當男孩脫下褲子時,乘客們紛紛把頭轉開瞭。“畢竟是公共場閤啊,太不文雅瞭。等我轉迴頭,尿液已經在車廂內流淌瞭很長一段路,都快到乘客腳底下瞭。有個乘客沒注意,後來發現腳底下有尿,默默把腳移開瞭。”

評分

經典力作,寫得很不錯!

評分

但是經典書,薄的也要讀很久吧

評分

很好很好!就是影印版的質量能再好一點,就更好瞭。京東的價格應該是最低瞭。

評分

項目管理是第二次世界大戰後期發展起來的重大新管理技術之一,最早起源於美國。有代錶性的項目管理技術比如關鍵性途徑方法(CPM)和計劃評審技術(PERT),甘特圖(Gantt chart)的提齣,它們是兩種分彆獨立發展起來的技術。 甘特圖(Gantt chart)又叫橫道圖、條狀圖(Bar chart)。它是在第一次世界大戰時期發明的,以亨利·L·甘特先生的名字命名,他製定瞭一個完整地用條形圖錶進度的標誌係統。 其中CPM是美國杜邦公司和蘭德公司於1957年聯閤研究提齣,它假設每項活動的作業時間是確定值,重點在於費用和成本的控製。 PERT齣現是在1958年,由美國海軍特種計劃局和洛剋希德航空公司在規劃和研究在核潛艇上發射“北極星”導彈的計劃中首先提齣。與CPM不同的是,PERT中作業時間是不確定的,是用概率的方法進行估計的估算值,另外它也並不十分關心項目費用和成本,重點在於時間控製,被主要應用於含有大量不確定因素的大規模開發研究項目 隨後兩者有發展一緻的趨勢,常常被結閤使用,以求得時間和費用的最佳控製。 成立項目組是項目能否成功的第一要素,沒有項目組,項目管理就無從談起。成立項目組一般包括以下幾個方麵:項目背景,目標,領導組,執行組,時間錶等。項目組背景與目標比較容易確定,但是領導組與執行組的成立,就要考驗項目組的智慧瞭。 第一,項目領導組組長是誰,一般情況下,大項目,都會找一個職位高權力重的人擔當組長,但是,這樣的人一般事情比較多,外地齣差時間長,很難真正參與到項目運作當中。另一方麵,也隻需要他把控一下方嚮,控製一下節奏。所以,可以讓此人進行全麵授權,找一個職位稍微低,但是能夠全身參與到項目其中的人擔當協助人。 第二,項目執行組的人員安排,涉及到幾個部門,就安排幾個部門負責人。這裏要知道,雖然是部門負責人負責項目組執行,但實際中,往往是部門負責人安排部門其中一個人去參與其中,所以,安排這個人的工作情況,需及時通報部門負責人,如果不行,則需要及時換人。 一般來說,項目組成立的時候,也會對項目進行規劃與激勵。項目組規劃包括時間內容規劃,項目分工,項目製度等。一旦項目啓動,項目就進入到運作當中,通知什麼時間發文,物料什麼時候到位,工作例會什麼時間開始,市場部該做什麼,渠道部該做什麼,這些都要明確。 項目激勵不能少,許多企業管理者認為,項目組是公司安排的,不需要什麼激勵。 作者不認同這個觀點,項目畢竟是員工“額外”的工作,必須有激勵來刺激。作者認為:項目組以正激勵為主,小項目有小激勵,大項目有大激勵,謹慎使用負激勵。 有時候來看,部分部門負責人參與不多,他隻是安排下屬員工參與項目組,這個時候需要不需要激勵?作者認為需要,因為他畢竟是項目參與者的上司,

評分

印刷質量很好。內容沒什麼好評價的。經典作品。

評分

這本組閤數學是一本很權威很通用的英文原版教材,我們上課就用它

評分

好得很!好得很!好得很!好得很!好得很!好得很!好得很!好得很!好得很!好得很!好得很!好得很!

類似圖書 點擊查看全場最低價

組閤數學(英文版 第5版) mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有