组合数学(英文版 第5版)

组合数学(英文版 第5版) 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
[美] 布鲁迪 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-23

类似图书 点击查看全场最低价

图书介绍

出版社: 机械工业出版社
ISBN:9787111265252
版次:5
商品编码:10059101
品牌:机工出版
包装:平装
丛书名: 经典原版书库
开本:16开
出版时间:2009-03-01
用纸:胶版纸
页数:605
正文语种:英语


相关图书





图书描述

编辑推荐

  

  《组合数学(英文版)(第5版)》是系统阐述组合数学基础,理论、方法和实例的优秀教材。出版30多年来多次改版。被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响。也是相关学科的主要参考文献之一。《组合数学(英文版)(第5版)》侧重于组合数学的概念和思想。包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配,实验设计、图)等。深入浅出地表达了作者对该领域全面和深刻的理解。除包含第4版中的内

内容简介

  《组合数学(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授权机械工业出版社少数出版。未经出版者书面许可,不得以任何方式复制或抄袭奉巾内容。仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中同台湾地区)销售发行。《组合数学(英文版)(第5版)》封面贴有Pearson Education(培生教育出版集团)激光防伪标签,无标签者不得销售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
  Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
  Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
  For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).

作者简介

  Richard A.Brualdi,美国威斯康星大学麦迪逊分校数学系教授(现已退休)。曾任该系主任多年。他的研究方向包括组合数学、图论、线性代数和矩阵理论、编码理论等。Brualdi教授的学术活动非常丰富。担任过多种学术期刊的主编。2000年由于“在组合数学研究中所做出的杰出终身成就”而获得组合数学及其应用学会颁发的欧拉奖章。

内页插图

目录

1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises

2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises

3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises

4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises

5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises

6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises

7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises

8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives

9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises

10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises

11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises

12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises

13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises

14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises

精彩书摘

  Chapter 3
  The Pigeonhole Principle
  We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
  3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
  Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
  Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.

前言/序言

  I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
  In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
  The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
  Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
  Chapter 2 now contains a short section (Section 3.6) on finite probability.
  Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
  Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
  The section on partition numbers (Section 8.3) has been expanded.
  Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
  As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.
组合数学(英文版 第5版) 下载 mobi epub pdf txt 电子书 格式

组合数学(英文版 第5版) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

组合数学(英文版 第5版) 下载 mobi pdf epub txt 电子书 格式 2024

组合数学(英文版 第5版) 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

小孩喜欢数学,买来学习学习。

评分

系统阐述组合数学基础,理论、方法和实例的优秀教材

评分

好好好好好好好好好好好好好好好好好好

评分

项目管理是第二次世界大战后期发展起来的重大新管理技术之一,最早起源于美国。有代表性的项目管理技术比如关键性途径方法(CPM)和计划评审技术(PERT),甘特图(Gantt chart)的提出,它们是两种分别独立发展起来的技术。 甘特图(Gantt chart)又叫横道图、条状图(Bar chart)。它是在第一次世界大战时期发明的,以亨利·L·甘特先生的名字命名,他制定了一个完整地用条形图表进度的标志系统。 其中CPM是美国杜邦公司和兰德公司于1957年联合研究提出,它假设每项活动的作业时间是确定值,重点在于费用和成本的控制。 PERT出现是在1958年,由美国海军特种计划局和洛克希德航空公司在规划和研究在核潜艇上发射“北极星”导弹的计划中首先提出。与CPM不同的是,PERT中作业时间是不确定的,是用概率的方法进行估计的估算值,另外它也并不十分关心项目费用和成本,重点在于时间控制,被主要应用于含有大量不确定因素的大规模开发研究项目 随后两者有发展一致的趋势,常常被结合使用,以求得时间和费用的最佳控制。 成立项目组是项目能否成功的第一要素,没有项目组,项目管理就无从谈起。成立项目组一般包括以下几个方面:项目背景,目标,领导组,执行组,时间表等。项目组背景与目标比较容易确定,但是领导组与执行组的成立,就要考验项目组的智慧了。 第一,项目领导组组长是谁,一般情况下,大项目,都会找一个职位高权力重的人担当组长,但是,这样的人一般事情比较多,外地出差时间长,很难真正参与到项目运作当中。另一方面,也只需要他把控一下方向,控制一下节奏。所以,可以让此人进行全面授权,找一个职位稍微低,但是能够全身参与到项目其中的人担当协助人。 第二,项目执行组的人员安排,涉及到几个部门,就安排几个部门负责人。这里要知道,虽然是部门负责人负责项目组执行,但实际中,往往是部门负责人安排部门其中一个人去参与其中,所以,安排这个人的工作情况,需及时通报部门负责人,如果不行,则需要及时换人。 一般来说,项目组成立的时候,也会对项目进行规划与激励。项目组规划包括时间内容规划,项目分工,项目制度等。一旦项目启动,项目就进入到运作当中,通知什么时间发文,物料什么时候到位,工作例会什么时间开始,市场部该做什么,渠道部该做什么,这些都要明确。 项目激励不能少,许多企业管理者认为,项目组是公司安排的,不需要什么激励。 作者不认同这个观点,项目毕竟是员工“额外”的工作,必须有激励来刺激。作者认为:项目组以正激励为主,小项目有小激励,大项目有大激励,谨慎使用负激励。 有时候来看,部分部门负责人参与不多,他只是安排下属员工参与项目组,这个时候需要不需要激励?作者认为需要,因为他毕竟是项目参与者的上司,

评分

组合数学(英文版 第5版)

评分

不错

评分

经典书籍,书的质量也很好

评分

很好的一本书,想买好久了

评分

不错很好

类似图书 点击查看全场最低价

组合数学(英文版 第5版) mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有