Wavelets in Engineering Applications 97870304

Wavelets in Engineering Applications 97870304 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
罗高涌 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-12

类似图书 点击查看全场最低价

图书介绍

店铺: 博学精华图书专营店
出版社: 科学出版社
ISBN:9787030410092
商品编码:29658020789
包装:平装
出版时间:2014-06-01


相关图书





图书描述

基本信息

书名:Wavelets in Engineering Applications

:78.00元

售价:53.0元,便宜25.0元,折扣67

作者:罗高涌

出版社:科学出版社

出版日期:2014-06-01

ISBN:9787030410092

字数

页码:196

版次:1

装帧:平装

开本:16开

商品重量:0.4kg

编辑推荐


内容提要

《Wavelets iEngineering Applications》收集了作者所研究的小波理论在信息技术中的工程应用的十多篇论文的系统化合集。书中首先介绍了小波变换的基本原理及在信号处理应用中的特性,并在如下应用领域:系统建模、状态监控、过程控制、振动分析、音频编码、图像质量测量、图像降噪、无线定位、电力线通信等,分章节详细的阐述小波理论及其在相关领域的工程实际应用,对各种小波变换形式的优缺点展开细致的论述,并针对相应的工程实例,开发出既能满足运算精度要求,又能实现快速实时处理的小波技术的工程应用。因此,《Wavelets iEngineering Applications》既具有很强的理论参考价值,又具有非常实际的应用参考价值。

目录


作者介绍


文摘

ChApter 1
WAVELET TRANSFORMS IN SIGNAL PROCESSING
1.1 Introductio
The Fourier trAnsform (FT) AnAlysis concept is widely used for signAl processing. The FT of A functiox(t) is de.ned As

+∞
X.(ω)=x(t)e.iωtdt (1.1)
.∞
The FT is Aexcellent tool for deposing A signAl or functiox(t)iterms of its frequency ponents, however, it is not locAlised itime. This is A disAdvAntAge of Fourier AnAlysis, iwhich frequency informAtiocAonly be extrActed for the plete durAtioof A signAl x(t). If At some point ithe lifetime of x(t), there is A locAl oscillAtiorepresenting A pArticulAr feAture, this will contribute to the
.
cAlculAted Fourier trAnsform X(ω), but its locAtioothe time Axis will be lost
There is no wAy of knowing whether the vAlue of X(ω) At A pArticulAr ω derives from frequencies present throughout the life of x(t) or during just one or A few selected periods.
Although FT is pArticulArly suited for signAls globAl AnAlysis, where the spectrAl chArActeristics do not chAnge with time, the lAck of locAlisAtioitime mAkes the FT unsuitAble for designing dAtA processing systems for non-stAtionAry signAls or events. Windowed FT (WFT, or, equivAlently, STFT) multiplies the signAls by A windowing function, which mAkes it possible to look At feAtures of interest At di.erent times. MAthemAticAlly, the WFT cAbe expressed As A functioof the frequency ω And the positiob

1 +∞ X(ω, b)= x(t)w(t . b)e.iωtdt (1.2) 2π.∞ This is the FT of functiox(t) windowed by w(t) for All b. Hence one cAobtAiA time-frequency mAp of the entire signAl. The mAidrAwbAck, however, is thAt the windows hAve the sAme width of time slot. As A consequence, the resolutioof
the WFT will be limited ithAt it will be di.cult to distinguish betweesuccessive events thAt Are sepArAted by A distAnce smAller thAthe window width. It will Also be di.cult for the WFT to cApture A lArge event whose signAl size is lArger thAthe window’s size.
WAvelet trAnsforms (WT) developed during the lAst decAde, overe these lim-itAtions And is knowto be more suitAble for non-stAtionAry signAls, where the descriptioof the signAl involves both time And frequency. The vAlues of the time-frequency representAtioof the signAl provide AindicAtioof the speci.c times At which certAispectrAl ponents of the signAl cAbe observed. WT provides A mApping thAt hAs the Ability to trAde o. time resolutiofor frequency resolutioAnd vice versA. It is e.ectively A mAthemAticAl microscope, which Allows the user to zoom ifeAtures of interest At di.erent scAles And locAtions.
The WT is de.ned As the inner product of the signAl x(t)with A two-pArAmeter fAmily with the bAsis functio
(
. 1 +∞ t . b
2
WT(b, A)= |A|x(t)Ψˉdt = x, Ψb,A (1.3)
A
.∞
(
t . b
ˉ
where Ψb,A = Ψ is AoscillAtory function, Ψdenotes the plex conjugAte
A of Ψ, b is the time delAy (trAnslAte pArAmeter) which gives the positioof the wAvelet, A is the scAle fActor (dilAtiopArAmeter) which determines the frequency content.
The vAlue WT(b, A) meAsures the frequency content of x(t) iA certAifrequency bAnd withiA certAitime intervAl. The time-frequency locAlisAtioproperty of the WT And the existence of fAst Algorithms mAke it A tool of choice for AnAlysing non-stAtionAry signAls. WT hAve recently AttrActed much Attentioithe reseArch munity. And the technique of WT hAs beeApplied isuch diverse .elds As digitAl municAtions, remote sensing, medicAl And biomedicAl signAl And imAge processing, .ngerprint AnAlysis, speech processing, Astronomy And numericAl AnAly-sis.

1.2 The continuous wAvelet trAnsform
EquAtio(1.3) is the form of continuous wAvelet trAnsform (CWT). To AnAlyse Any .nite energy signAl, the CWT uses the dilAtioAnd trAnslAtioof A single wAvelet functioΨ(t) cAlled the mother wAvelet. Suppose thAt the wAvelet Ψ sAtis.es the Admissibility conditio
II
.2
II
+∞ I Ψ(ω)I CΨ =dω< ∞ (1.4)
ω
.∞
where Ψ.(ω) is the Fourier trAnsform of Ψ(t). Then, the continuous wAvelet trAnsform WT(b, A) is invertible oits rAnge, And Ainverse trAnsform is giveby the relAtion
1 +∞ dAdb
x(t)= WT(b, A)Ψb,A(t) (1.5)
A2
CΨ .∞
One would ofterequire wAvelet Ψ(t) to hAve pAct support, or At leAst to hAve fAst decAy As t goes to in.nity, And thAt Ψ.(ω) hAs su.cient decAy As ω goes to in.nity. From the Admissibility condition, it cAbe seethAt Ψ.(0) hAs to be 0, And, ipArticulAr, Ψ hAs to oscillAte. This hAs giveΨ the nAme wAvelet or “smAll wAve”. This shows the time-frequency locAlisAtioof the wAvelets, which is AimportAnt feAture thAt is required for All the wAvelet trAnsforms to mAke them useful for AnAlysing non-stAtionAry signAls.
The CWT mAps A signAl of one independent vAriAble t into A functioof two independent vAriAbles A,b. It is cAlculAted by continuously shifting A continuously scAlAble functioover A signAl And cAlculAting the correlAtiobetweethe two. This provides A nAturAl tool for time-frequency signAl AnAlysis since eAch templAte Ψb,A is predominAntly locAlised iA certAiregioof the time-frequency plAne with A centrAl frequency thAt is inversely proportionAl to A. The chAnge of the Amplitude Around A certAifrequency cAthebe observed. WhAt distinguishes it from the WFT is the multiresolutionAture of the AnAlysis.

1.3 The discrete wAvelet trAnsform
From A putAtionAl point of view, CWT is not e.cient. One wAy to solve this problem is to sAmple the continuous wAvelet trAnsform oA two-dimensionAl grid (Aj ,bj,k). This will not prevent the inversioof the discretised wAvelet trAnsform igenerAl.
IequAtio(1.3), if the dyAdic scAles Aj =2j Are chosen, And if one chooses bj,k = k2j to AdApt to the scAle fActor Aj , it follows thAt
( II. 1 ∞ t . k2j
2
dj,k =WT(k2j , 2j)= I2jI x(t)Ψˉdt = x(t), Ψj,k(t) (1.6) .∞ 2j
where Ψj,k(t)=2.j/2Ψ(2.j t . k).
The trAnsform thAt only uses the dyAdic vAlues of A And b wAs originAlly cAlled the discrete wAvelet trAnsform (DWT). The wAvelet coe.cients dj,k Are considered As A time-frequency mAp of the originAl signAl x(t). Oftefor the DWT, A set of
{}
bAsis functions Ψj,k(t), (j, k) ∈ Z2(where Z denotes the set of integers) is .rst chosen, And the goAl is theto .nd the depositioof A functiox(t) As A lineAr binAtioof the givebAsis functions. It should Also be noted thAt Although
{}
Ψj,k(t), (j, k) ∈ Z2is A bAsis, it is not necessArily orthogonAl. Non-orthogonAl bAses give greAter .exibility And more choice thAorthogonAl bAses. There is A clAss of DWT thAt cAbe implemented using e.cient Algorithms. These types of wAvelet trAnsforms Are AssociAted with mAthemAticAl structures cAlled multi-resolutioAp-proximAtions. These fAst Algorithms use the property thAt the ApproximAtiospAces Are nested And thAt the putAtions At coArser resolutions cAbe bAsed entirely othe ApproximAtions At the previous .nest level.
Iterms of the relAtionship betweethe wAvelet functioΨ(t) And the scAling functioφ(t), nAmely
II ∞II
2 f
II II
I φ.(ω)I = I Ψ.(2j ω)I (1.7)
j=.∞
The discrete scAling functiocorresponding to the discrete wAvelet functiois As follows
(
1 t . 2j k
φj,k(t)= √ φ (1.8)
2j 2j
It is used to discretise the signAl; the sAmpled vAlues Are de.ned As the scAling coe.cients cj,k

cj,k = x(t)φˉ j,k(t)dt (1.9)
.∞ < Wavelets in Engineering Applications 97870304 下载 mobi epub pdf txt 电子书 格式


Wavelets in Engineering Applications 97870304 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

Wavelets in Engineering Applications 97870304 下载 mobi pdf epub txt 电子书 格式 2025

Wavelets in Engineering Applications 97870304 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

Wavelets in Engineering Applications 97870304 mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有