9787111600466 9787121342479 SL585
PaddlePaddle深度学习实战
书 名: | paddlepaddle深度学习实战 |
图书定价: | 69元 |
作 者: | 刘祥龙;杨晴虹;谭中意;蒋晓琳 |
出 版 社: | 机械工业出版社 |
出版日期: | 2018-06-01 |
ISBN 号: | 9787111600466 |
开 本: | 16开 |
页 数: | 0 |
版 次: | 1-1 |
序
前言
致谢
1章 数学基础与Python库 1
1.1 Python是进行人工智能编程的
主要语言 1
1.2 数学基础 4
1.2.1 线性代数基础 4
1.2.2 微积分基础 8
1.3 Python库的操作 17
1.3.1 numpy操作 17
1.3.2 matplotlib操作 23
本章小结 27
2章 深度学习概论与PaddlePaddle入门 28
2.1 人工智能、机器学习与深度学习 29
2.1.1 人工智能 30
2.1.2 机器学习 30
2.1.3 深度学习 31
2.2 深度学习的发展历程 32
2.2.1 神经网络的*一次高潮 32
2.2.2 神经网络的*一次寒冬 33
2.2.3 神经网络的*二次高潮 34
2.2.4 神经网络的*二次寒冬 35
2.2.5 深度学习的来临 35
2.2.6 深度学习崛起的时代背景 36
2.3 深度学习的应用场景 36
2.3.1 图像与视觉 37
2.3.2 语音识别 37
2.3.3 自然语言处理 38
2.3.4 个性化推荐 38
2.4 常见的深度学习网络结构 39
2.4.1 全连接网络结构 39
2.4.2 卷积神经网络 40
2.4.3 循环神经网络 41
2.5 机器学习回顾 41
2.5.1 线性回归的基本概念 42
2.5.2 数据处理 44
2.5.3 模型概览 45
2.5.4 效果展示 46
2.6 深度学习框架简介 47
2.6.1 深度学习框架的作用 47
2.6.2 常见的深度学习框架 48
2.6.3 PaddlePaddle简介 49
2.6.4 PaddlePaddle使用 49
2.7 PaddlePaddle实现 51
本章小结 60
3章 深度学习的单层网络 61
3.1 Logistic回归模型 62
3.1.1 Logistic回归概述 62
3.1.2 损失函数 64
3.1.3 Logistic回归的梯度下降 66
3.2 实现Logistic回归模型 71
3.2.1 Python版本 72
3.2.2 PaddlePaddle版本 81
本章小结 90
4章 浅层神经网络 92
4.1 神经网络 92
4.1.1 神经网络的定义及其结构 92
4.1.2 神经网络的计算 94
4.2 BP算法 100
4.2.1 逻辑回归与BP算法 101
4.2.2 单样本双层神经网络的BP算法 101
4.2.3 多个样本神经网络BP算法 105
4.3 BP算法实践 108
4.3.1 Python版本 109
4.3.2 PaddlePaddle版本 116
本章小结 122
5章 深层神经网络 123
5.1 深层网络介绍 123
5.1.1 深度影响算法能力 124
5.1.2 网络演化过程与常用符号 125
5.2 传播过程 127
5.2.1 神经网络算法核心思想 127
5.2.2 深层网络前向传播过程 128
5.2.3 深层网络后向传播过程 129
5.2.4 传播过程总结 130
5.3 网络的参数 132
5.4 代码实现 133
5.4.1 Python版本 133
5.4.2 PaddlePaddle版本 136
本章小结 140
6章 卷积神经网络 141
6.1 图像分类问题描述 141
6.2 卷积神经网络介绍 142
6.2.1 卷积层 142
6.2.2 ReLU激活函数 147
6.2.3 池化层 148
6.2.4 Softmax分类层 149
6.2.5 主要特点 151
6.2.6 经典神经网络架构 152
6.3 PaddlePaddle实现 159
6.3.1 数据介绍 159
6.3.2 模型概览 160
6.3.3 配置说明 160
6.3.4 应用模型 168
本章小结 169
7章 个性化推荐 170
7.1 问题描述 170
7.2 传统推荐方法 171
7.2.1 基于内容的推荐 172
... ...
PaddlePaddle与深度学习应用实战
深度学习是目前人工智能研究中前沿、有效的一项技术,主要通过构建深度神经网络解决视觉、自然语言处理、语音识别等诸多领域的问题。百度在2016年发布了国内**开源深度学习框架PaddlePaddle,简化了深度学习算法的实现步骤,提供了灵活、易用的接口,同时支持分布式训练。 本书由简单的例子引入深度学习和PaddlePaddle框架,介绍了PaddlePaddle的安装、测试与基本使用,并结合PaddlePaddle接口介绍深度学习的基础知识,包括常用的神经网络和算法。后,通过一系列深度学习项目实例介绍PaddlePaddle在各种场景和问题中的应用,让读者由浅至深地理解并运用深度学习解决实际问题。
1 章 深度学习简介 .............................................................................................................. 1
1.1 初见 ....................................................................................................................................... 1
1.2 机器学习 ............................................................................................................................... 1
1.3 神经网络 ............................................................................................................................... 3
1.4 深度学习介绍 ....................................................................................................................... 7
1.5 深度学习应用 ....................................................................................................................... 8
1.6 深度学习框架 ..................................................................................................................... 12
1.7 深度学习的未来 ................................................................................................................. 15
第2 章 PaddlePaddle 简介 ................................................................................................... 16
2.1 安装PaddlePaddle ............................................................................................................... 16
2.2 测试PaddlePaddle ............................................................................................................... 29
第3 章 初探手写数字识别 .................................................................................................... 31
第4 章 PaddlePaddle 基本用法 ........................................................................................... 44
4.1 数据准备 ............................................................................................................................. 44
4.2 原始数据读取及预处理 ..................................................................................................... 44
4.3 PaddlePaddle 训练数据 ....................................................................................................... 46
4.4 模型配置 ............................................................................................................................. 52
4.5 激活函数 ............................................................................................................................. 58
4.6 优化方法 ............................................................................................................................. 64
4.7 损失函数 ............................................................................................................................. 72
4.8 均方损失函数 ..................................................................................................................... 73
4.9 交叉熵损失函数 ................................................................................................................. 73
4.10 Huber 损失函数 ................................................................................................................ 74
4.11 CRF 损失函数 ................................................................................................................... 74
4.12 CTC 损失函数 ................................................................................................................... 75
4.13 反向传播算法 ................................................................................................................... 75
第5 章 卷积神经网络 ............................................................................................................ 78
5.1 卷积神经网络 ..................................................................................................................... 78
5.2 实例学习 ............................................................................................................................. 87
5.3 拓展 ................................................................................................................................... 112
第6 章 循环神经网络 .......................................................................................................... 118
6.1 RNN 简介 .......................................................................................................................... 118
6.2 双向循环神经网络 ........................................................................................................... 121
6.3 循环神经网络使用场景 ................................................................................................... 127
6.4 预测sin 函数序列 ............................................................................................................. 129
6.5 拓展 ................................................................................................................................... 134
第7 章 PaddlePaddle 实战 ................................................................................................. 136
7.1 自编码器 ........................................................................................................................... 136
7.2 PaddlePaddle 实现自编码器 ............................................................................................. 137
7.3 实战OCR 识别(一) ..................................................................................................... 140
7.4 实战OCR 识别(二) ..................................................................................................... 150
7.5 情感分析 ........................................................................................................................... 164
7.6 Seq2Seq 及其应用 ............................................................................................................ 172
7.7 实现 ................................................................................................................................... 178
7.8 Image Caption .................................................................................................................... 194
第8 章 深度学习新星:生成对抗网络GAN ....................................................................... 208
8.1 生成对抗网络(GAN) ................................................................................................... 208
8.2 GAN 的其他应用 .............................................................................................................. 213
第9 章 强化学习与AlphaGo .............................................................................................. 216
评分
评分
评分
评分
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有