在线试读 第1章 绪论 1.1 目的与范围 本书主要关注黏土、砂、粉土和岩石等各种岩土材料的塑性理论及其在岩土工程设计和分析中的应用。Hill(1950)在其经典著作中,给出了塑性理论的精准定义:“塑性理论系指用数学方法研究塑性变形固体中应力-应变关系的理论。该理论以均匀复合受力状态下塑性固体的宏观行为的实验观测为研究基点,以如下两个任务为研究目标:第*,建立广泛条件下尽可能逼近实验观测的显式应力-应变关系;第二,发展用于计算在任何条件下产生永*变形固体中非均匀应力应变分布的数学技术。” 本书遵循上述定义,着重阐述这两方面的进展,也即适用岩土材料的应力-应变关系的本构理论,以及可用于求解岩土工程设计中涉及塑性变形问题的各种解析与数值计算方法。 由于上述领域十分广泛且仍在不断扩大,很难在一本书中覆盖该领域各个方面的研究进展,因此,本书并不打算对整个岩土塑性理论领域泛泛而谈,而是旨在集中介绍目前岩土塑性理论中*有用的进展,支撑其发展的关键概念,以及其在岩土工程分析中的应用;重点介绍*新的研究进展,关键概念之间的内在联系,它们与经典金属塑性理论之间的关联,还有笔者过去二十年的研究工作。如上所述,尽管本书内容有所选裁,但仍然试图对岩土塑性理论进行全面统一的论述,希望本书的出版对塑性理论在岩土工程中的进一步发展应用有所裨益。 1.2 历史简顾 本节将对岩土塑性理论的发展进行简要回顾。为便于学习,根据上节讨论,下面分开阐述弹塑性应力-应变关系和塑性理论的求解方法。 1.2.1 弹塑性应力-应变关系 20世纪50和60年代,研究人员通过对金属塑性行为数十年的理论和试验研究成果的总结,奠定了经典塑性理论的基础。Nadai(1950)、Hill(1950)、Drucker(1950)、Prager(1955)和Naghdi(1960)对该理论早期的发展进行了综述。其中关键概念包括,de Saint-Venant(1870)提出的主应力和应变率张量的共轴假设,von Mises(1928)与Melan(1938)提出的塑性位势理论,Hill 的*大塑性功原理(1948),Drucker(1952,1958)的稳定性公设以及Prager(1955)与Ziegler(1959)的随动硬化准则。 岩土塑性理论的早期发展建立于上述金属塑性理论基础之上,与之不同的是,体积变化在岩土材料塑性行为模型中的作用至关重要。Drucker 等(1957)关于土体硬化的工作以及Roscoe 等(1958)关于土体屈服的工作为临界状态理论奠定了基础,支撑了岩土材料塑性理论的诸多后续发展(Schofield and Wroth,1968;Roscoe and Burland,1968;Wroth and Houlsby,1985;Yu,1998)。 金属塑性理论的*新进展包括边界面塑性(Dafalias and Popov,1975;Krieg,1975)、多重屈服面塑性理论(Mroz,1967;Iwan,1967)和内蕴时间理论(Valanis,1971)。 在过去的二十多年,这些概念已成功应用于岩土材料的建模,并取得了很大成功。其他一些主要概念也已用来发展岩土材料的塑性应力-应变关系,如岩土材料的双剪理论(Spencer,1964;de Josselin de Jong,1971;Harris,1995;Yu and Yuan,2005,2006)、屈服顶点理论(Rudnicki and Rice,1975;Yang and Yu,2006a,2006b)、热力学方法(Houlsby,1982;Maugin,1992;Collins and Houlsby,1997)