程序员的数学2

程序员的数学2 pdf epub mobi txt 电子书 下载 2025

平冈和幸
图书标签:
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
第1部分 聊聊概率这件事
第1章 概率的定义  3
1.1 概率的数学定义  3
1.2 三扇门(蒙提霍尔问题) ——飞艇视角  4
1.2.1 蒙提霍尔问题  5
1.2.2 正确答案与常见错误  6
1.2.3 以飞艇视角表述  6
1.3 三元组(Ω, F, P) ——上帝视角  9
1.4 随机变量  13
1.5 概率分布  17
1.6 适于实际使用的简记方式  19
1.6.1 随机变量的表示方法  19
1.6.2 概率的表示方法  20
1.7 Ω是幕后角色  21
1.7.1 不必在意Ω究竟是什么  21
1.7.2 Ω的习惯处理方式  22
1.7.3 不含Ω(不含上帝视角)的概率论  23
1.8 一些注意事项  23
1.8.1 想做什么  23
1.8.2 因为是面积……  24
1.8.3 解释  26
第2章 多个随机变量之间的关系  29
2.1 各县的土地使用情况(面积计算的预热)  29
2.1.1 不同县、不同用途的统计(联合概率与边缘概率的预热)  30
2.1.2 特定县、特定用途的比例(条件概率的预热)  31
2.1.3 倒推比例(贝叶斯公式的预热)  32
2.1.4 比例相同的情况(独立性的预热)  34
2.1.5 预热结束  38
2.2 联合概率与边缘概率  38
2.2.1 两个随机变量  38
2.2.2 三个随机变量  41
2.3 条件概率  42
2.3.1 条件概率的定义  42
2.3.2 联合分布、边缘分布与条件分布的关系  45
2.3.3 即使条件中使用的不是等号也一样适用  50
2.3.4 三个或更多的随机变量  51
2.4 贝叶斯公式  55
2.4.1 问题设置  56
2.4.2 贝叶斯的作图曲  57
2.4.3 贝叶斯公式  61
2.5 独立性  63
2.5.1 事件的独立性(定义)  64
2.5.2 事件的独立性(等价表述)  67
2.5.3 随机变量的独立性  70
2.5.4 三个或更多随机变量的独立性(需多加注意)  73
第3章 离散值的概率分布  79
3.1 一些简单的例子  79
3.2 二项分布  82
3.2.1 二项分布的推导  82
3.2.2 补充:排列nPk、组合nCk  83
3.3 期望值  85
3.3.1 期望值的定义  85
3.3.2 期望值的基本性质  87
3.3.3 期望值乘法运算的注意事项  91
3.3.4 期望值不存在的情况  93
3.4 方差与标准差  99
3.4.1 即使期望值相同  99
3.4.2 方差即“期望值离散程度”的期望值  100
3.4.3 标准差  102
3.4.4 常量的加法、乘法及标准化  104
3.4.5 各项独立时,和的方差等于方差的和  108
3.4.6 平方的期望值与方差  110
3.5 大数定律  112
3.5.1 独立同分布  114
3.5.2 平均值的期望值与平均值的方差  116
3.5.3 大数定律  117
3.5.4 大数定律的相关注意事项  118
3.6 补充内容:条件期望与最小二乘法  120
3.6.1 条件期望的定义  120
3.6.2 最小二乘法  121
3.6.3 上帝视角  122
3.6.4 条件方差  123
第4章 连续值的概率分布  127
4.1 渐变色打印问题(密度计算的预热)  128
4.1.1 用图表描述油墨的消耗量(累积分布函数的预热)  128
4.1.2 用图表描述油墨的打印浓度(概率密度函数预热)  129
4.1.3 拉伸打印成品对油墨浓度的影响(变量变换的预热)  133
4.2 概率为零的情况  136
4.2.1 出现概率恰好为零的情况  137
4.2.2 概率为零将带来什么问题  139
4.3 概率密度函数  140
4.3.1 概率密度函数  140
4.3.2 均匀分布  146
4.3.3 概率密度函数的变量变换  147
4.4 联合分布·边缘分布·条件分布  152
4.4.1 联合分布  152
4.4.2 本小节之后的阅读方式  155
4.4.3 边缘分布  155
4.4.4 条件分布  159
4.4.5 贝叶斯公式  162
4.4.6 独立性  163
4.4.7 任意区域的概率·均匀分布·变量变换  166
4.4.8 实数值与离散值混合存在的情况  174
4.5 期望值、方差与标准差  174
4.5.1 期望值  175
4.5.2 方差·标准差  179
4.6 正态分布与中心极限定理  180
4.6.1 标准正态分布  181
4.6.2 一般正态分布  184
4.6.3 中心极限定理  187
第5章 协方差矩阵、多元正态分布与椭圆  195
5.1 协方差与相关系数  196
5.1.1 协方差  196
5.1.2 协方差的性质  199
5.1.3 分布倾向的明显程度与相关系数  200
5.1.4 协方差与相关系数的局限性  206
5.2 协方差矩阵  208
5.2.1 协方差矩阵=方差与协方差的一览表  208
5.2.2 协方差矩阵的向量形式表述  209
5.2.3 向量与矩阵的运算及期望值  212
5.2.4 向量值随机变量的补充说明  215
5.2.5 协方差矩阵的变量变换  217
5.2.6 任意方向的发散程度  218
5.3 多元正态分布  220
5.3.1 多元标准正态分布  220
5.3.2 多元一般正态分布  223
5.3.3 多元正态分布的概率密度函数  228
5.3.4 多元正态分布的性质  230
5.3.5 截面与投影  232
5.3.6 补充知识:卡方分布  239
5.4 协方差矩阵与椭圆的关系  242
5.4.1 (实例一)单位矩阵与圆  242
5.4.2 (实例二)对角矩阵与椭圆  244
5.4.3 (实例三)一般矩阵与倾斜的椭圆  247
5.4.4 协方差矩阵的局限性  251
第2部分 探讨概率的应用
第6章 估计与检验  257
6.1 估计理论  257
6.1.1 描述统计与推断统计  257
6.1.2 描述统计  258
6.1.3 如何理解推断统计中的一些概念  260
6.1.4 问题设定  264
6.1.5 期望罚款金额  265
6.1.6 多目标优化  266
6.1.7 (策略一)减少候选项——最小方差无偏估计  267
6.1.8 (策略二)弱化最优定义——最大似然估计  269
6.1.9 (策略三)以单一数值作为评价基准——贝叶斯估计  272
6.1.10 策略选择的相关注意事项  275
6.2 检验理论  276
6.2.1 检验理论中的逻辑  276
6.2.2 检验理论概述  278
6.2.3 简单假设  279
6.2.4 复合假设  282
第7章 伪随机数  285
7.1 伪随机数的基础知识  285
7.1.1 随机数序列  285
7.1.2 伪随机数序列  286
7.1.3 典型应用:蒙特卡罗方法  287
7.1.4 相关主题:密码理论中的伪随机数序列·低差异序列  289
7.2 遵从特定分布的随机数的生成  291
7.2.1 遵从离散值分布的随机数的生成  292
7.2.2 遵从连续值分布的随机数的生成  293
7.2.3 遵从正态分布的随机数的生成  296
7.2.4 补充知识:三角形内及球面上的均匀分布  298
第8章 概率论的各类应用  305
8.1 回归分析与多变量分析  305
8.1.1 通过最小二乘法拟合直线  305
8.1.2 主成分分析  312
8.2 随机过程  319
8.2.1 随机游走  321
8.2.2 卡尔曼滤波器  326
8.2.3 马尔可夫链  331
8.2.4 关于随机过程的一些补充说明  342
8.3 信息论  343
8.3.1 熵  343
8.3.2 二元熵  347
8.3.3 信源编码  349
8.3.4 信道编码  352
附录A 本书涉及的数学基础知识  359
A.1 希腊字母  359
A.2 数  359
A.2.1 自然数·整数  359
A.2.2 有理数·实数  359
A.2.3 复数  360
A.3 集合  360
A.3.1 集合的表述方式  360
A.3.2 无限集的大小  361
A.3.3 强化练习  361
A.4 求和符号∑  362
A.4.1 定义与基本性质  362
A.4.2 双重求和  364
A.4.3 范围指定  366
A.4.4 等比数列  366
A.5 指数与对数  368
A.5.1 指数函数  368
A.5.2 高斯积分  371
A.5.3 对数函数  374
A.6 内积与长度  377
附录B 近似公式与不等式  381
B.1 斯特林公式  381
B.2 琴生不等式  381
B.3 吉布斯不等式  384
B.4 马尔可夫不等式与切比雪夫不等式  385
B.5 切尔诺夫界  386
B.6 闵可夫斯基不等式与赫尔德不等式  387
B.7 算术平均值≥ 几何平均值≥ 调和平均值  390
附录C 概率论的补充知识  393
C.1 随机变量的收敛  393
C.1.1 依概率1收敛  393
C.1.2 依概率收敛  395
C.1.3 均方收敛  396
C.1.4 依分布收敛  396
C.2 特征函数  397
C.3 KL散度与大偏差原理  399
参考文献  404
· · · · · · (收起)

具体描述

本书沿袭《程序员的数学》平易近人的风格,用通俗的语言和具体的图表深入讲解程序员必须掌握的各类概率统计知识,例证丰富,讲解明晰,且提供了大量扩展内容,引导读者进一步深入学习。

本书涉及随机变量、贝叶斯公式、离散值和连续值的概率分布、协方差矩阵、多元正态分布、估计与检验理论、伪随机数以及概率论的各类应用,适合程序设计人员与数学爱好者阅读,也可作为高中或大学非数学专业学生的概率论入门读物。

用户评价

评分

##1.概率是面积。2.协方差是椭圆。感觉这样的传授方法其实挺好。不过并未深入,也许高中学统计时候作辅导书,比国内的习题集要容易上手吧。

评分

##简单只是表面,绝不能被前四章欺骗了。虽然内容也只是概率论的一小部分,但最后的应用篇直接升华到机器学习入门算法的程度,即使只限于初步概念,也适当做了些不算深入的解释,但如果概率论只是研究生通识水准的话,还是可以打开新世界大门的。我觉得书中所提的上帝视角这个概念很精准,另外连续概率分布用油墨打印来讲解非常清楚,对有基础的人也很有思考价值;但估计与检验的前半部分就不太友好,H0和H1我原本理解是很容易懂的概念,作者绕了两下反而有点头晕。最近在集中复习数学知识,发现自己不仅数学思维谈不上,连基础工具(概率论和线性代数)都用不好,有点着急。

评分

##很好的入门书

评分

##用生动的比喻对概率统计的原理进行讲解,对我这种把数学还给老师的人极其友好,非常非常值得一读,大力推荐。

评分

##拿来预习下学期的课应该绰绰有余了 这学期学完概率论了,果然还是这本更深入, 不过后面看的有点迷,反而看不懂了。 教材跟这本书思维差异很大,一起看还真有压力

评分

##摊手,我觉得我还是应该去看正经教材

评分

##拿来预习下学期的课应该绰绰有余了 这学期学完概率论了,果然还是这本更深入, 不过后面看的有点迷,反而看不懂了。 教材跟这本书思维差异很大,一起看还真有压力

评分

##语言太啰嗦了……而且有些地方纯用比方也不太好,不如茆诗松那本结构清晰,逻辑严密。然而那本看起来贼慢……

评分

##前面作为入门还不错,但是后面感觉一个是对各种分布介绍得太少,另一个对中心极限定理也介绍太少,协方差花了很多篇幅,但是最后突然难度增大,概率和统计还是应该看更专业一点的书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有