深度学习框架PyTorch:入门与实践
陈云 著
定价 65.00
出版社: 电子工业出版社
ISBN:9787121330773
版次:1
商品编码:12261129
品牌:Broadview
出版时间:2018-01-01
丛书名 :博文视点AI系列
作 译 者:廖星宇
出版时间:2017-09 千 字 数:299
版 次:01-01 页 数:232
开 本:16开
装 帧:
I S B N :9787121326202
换 版:
所属分类:科技 >> 计算机 >> 计算机科学
纸质书定价:¥79.0
深度学习如今已经成为了科技领域&炙手可热的技术,在本书中,我们将帮助你入门深度学习的领域。本书将从人工智能的介绍入手,了解机器学习和深度学习的基础理论,并学习如何用PyTorch框架对模型进行搭建。通过阅读本书,你将会学习到机器学习中的线性回归和logistic回归,深度学习的优化方法,多层全连接神经网络,卷积神经网络,循环神经网络以及生成对抗网络,同时从零开始对PyTorch进行学习,了解PyTorch基础及如何用其进行模型的搭建,&后通过实战了解&前沿的研究成果和PyTorch在实际项目中的应用。第1 章深度学习介绍1
1.1 人工智能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 数据挖掘、机器学习与深度学习. . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 数据挖掘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 机器学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 深度学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 学习资源与建议. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第2 章深度学习框架11
2.1 深度学习框架介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 PyTorch 介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 什么是PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 为何要使用PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 配置PyTorch 深度学习环境. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 操作系统的选择. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Python 开发环境的安装. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 PyTorch 的安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第3 章多层全连接神经网络24
3.1 热身:PyTorch 基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Tensor(张量) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Variable(变量) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Dataset(数据集) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 nn.Module(模组) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 torch.optim(优化) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 模型的保存和加载. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 线性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 一维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 多维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 一维线性回归的代码实现. . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 多项式回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 分类问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Logistic 起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Logistic 分布. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 二分类的Logistic 回归. . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 模型的参数估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.6 Logistic 回归的代码实现. . . . . . . . . . . . . . . . . . . . . . . 45
3.4 简单的多层全连接前向网络. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 模拟神经元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 单层神经网络的分类器. . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 神经网络的结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.5 模型的表示能力与容量. . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 深度学习的基石:反向传播算法. . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 反向传播算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Sigmoid 函数举例. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 各种优化算法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 梯度下降法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 处理数据和训练模型的技巧. . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 数据预处理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 权重初始化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 防止过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 多层全连接神经网络实现MNIST 手写数字分类. . . . . . . . . . . . . . 69
3.8.1 简单的三层全连接神经网络. . . . . . . . . . . . . . . . . . . . . 70
3.8.2 添加激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.3 添加批标准化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.4 训练网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
第4 章卷积神经网络76
4.1 主要任务及起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 卷积神经网络的原理和结构. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 全连接层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 卷积神经网络的基本形式. . . . . . . . . . . . . . . . . . . . . . 85
4.3 PyTorch 卷积模块. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 提取层结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 如何提取参数及自定义初始化. . . . . . . . . . . . . . . . . . . . 91
4.4 卷积神经网络案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 再实现MNIST 手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 图像增强的方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 实现cifar10 分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
第5 章循环神经网络111
5.1 循环神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.2 循环神经网络的基本结构. . . . . . . . . . . . . . . . . . . . . . 112
5.1.3 存在的问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 循环神经网络的变式:LSTM 与GRU . . . . . . . . . . . . . . . . . . . . 116
5.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3 收敛性问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 循环神经网络的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1 PyTorch 的循环网络模块. . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 实例介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 自然语言处理的应用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 词嵌入. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 词嵌入的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 N Gram 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.4 单词预测的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 134
5.4.5 词性判断. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.6 词性判断的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 137
5.5 循环神经网络的更多应用. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.1 Many to one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.2 Many to Many(shorter) . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3 Seq2seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.4 CNN+RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
第6 章生成对抗网络144
6.1 生成模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.1.1 自动编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.2 变分自动编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 生成对抗网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.1 何为生成对抗网络. . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.2 生成对抗网络的数学原理. . . . . . . . . . . . . . . . . . . . . . 160
6.3 Improving GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.1 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.2 Improving WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 应用介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.1 Conditional GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.2 Cycle GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
第7 章深度学习实战173
7.1 实例一——猫狗大战:运用预训练卷积神经网络进行特征提取与预测. 173
7.1.1 背景介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.2 原理分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.3 代码实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.4 总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 实例二——Deep Dream:探索卷积神经网络眼中的世界. . . . . . . . . 183
7.2.1 原理介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.2 预备知识:backward . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.3 代码实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.2.4 总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.3 实例三——Neural-Style:使用PyTorch 进行风格迁移. . . . . . . . . . . 196
7.3.1 背景介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.3.2 原理分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.3.3 代码实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.3.4 总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.4 实例四——Seq2seq:通过RNN 实现简单的Neural Machine Translation . 205
7.4.1 背景介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4.2 原理分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4.3 代码实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.4.4 总结. . . . . . . . . . . . . . . . . . . . . . . . . . . .
深度学习轻松学:核心算法与视觉实践
基本信息
出版社: 电子工业出版社; 第1版 (2017年7月1日)
平装
ISBN: 9787121317132
条形码: 9787121317132
品牌: 电子工业出版社
79.00
适读人群 :本书适合对深度学习感兴趣的读者阅读,也适合有志于从事计算机视觉研究等领域的广大学生阅读,可作为深度学习的入门教材。
本书特色
深入剖析卷积神经网络核心:全连接层和卷积层
深入分析Caffe源码实现架构,了解框架背后的运行机理
详尽介绍网络结构与训练细节,解密复杂运算的基本原理
经典实践场景:图像语意分割,图像生成。GAN模型的详细分析与推导
样例代码采用C++和Python两种语言编写
语言轻松幽默易于理解,特别适合初学者快速掌握深度学习核心思想
《深度学习轻松学:核心算法与视觉实践》介绍了深度学习基本算法和视觉领域的应用实例。书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时,书中还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。除此之外,书中还介绍了深度学习在视觉领域的应用,从原理层面揭示其思路思想,帮助读者在此领域中夯实技术基础。
《深度学习轻松学:核心算法与视觉实践》十分适合对深度学习感兴趣,希望对深层模型有较深入了解的读者阅读。
由深度学习引发的新一轮人工智能革命已经在众多领域颠覆了人们的认知,越来越多的人加入研究深度学习的大军。本书详尽介绍了深度学习的基本知识,以及视觉领域部分前沿应用,同时深入分析了工业界十分成熟的开源框架Caffe,可以帮助读者更快地夯实深度学习基础,跟上深度学习发展的前沿。作者行文在细节上十分认真,书中内容可读性很强,非常适合入门者阅读。
—— 猿辅导研究总监,邓澍军
近年来,深度学习技术已经给学术界、工业界带来了极大的影响,本书深入浅出地介绍了深度学习基础知识与视觉应用,语言轻松幽默但不失严谨,内容既涵盖经典概念,又包括一些全新的研究成果,特别是对一些底层的具体计算方式有细致的描述,这往往是深度学习入门者忽略的,因此非常适合深度学习的初学者和进阶者阅读学习。
—— 今日头条 AI Lab 科学家,《推荐系统实践》作者,项亮
随着GPU、TPU 等专用处理芯片的发展,深度学习技术逐渐从幕后走向台前,开始向世人展现其强大的非线性映射能力。本书从神经网络的基础结构入手,深入分析了深度学习模型内部的算法细节,并总结近年来一些优秀的研究成果,非常适合有志于研究深度学习的初学者和希望快速了解深度学习基础知识与发展的研究人员阅读。
—— 中国科学院计算技术研究所副研究员,刘淘英
1 机器学习与深度学习的概念1
1.1 什么是机器学习 1
1.1.1 机器学习的形式. 2
1.1.2 机器学习的几个组成部分. 8
1.2 深度学习的逆袭 9
1.3 深层模型在视觉领域的应用. 13
1.4 本书的主要内容 15
1.5 总结. 17
2 数学与机器学习基础18
2.1 线性代数基础. 18
2.2 对称矩阵的性质 22
2.2.1 特征值与特征向量 22
2.2.2 对称矩阵的特征值和特征向量 23
2.2.3 对称矩阵的对角化 24
2.3 概率论. 25
2.3.1 概率与分布. 25
2.3.2 &大似然估计 28
2.4 信息论基础 31
2.5 KL 散度. 33
2.6 凸函数及其性质 37
2.7 机器学习基本概念. 39
2.8 机器学习的目标函数 42
2.9 总结. 44
3 CNN 的基石:全连接层45
3.1 线性部分. 45
3.2 非线性部分 48
3.3 神经网络的模样 50
3.4 反向传播法 55
3.4.1 反向传播法的计算方法. 55
3.4.2 反向传播法在计算上的抽象. 58
3.4.3 反向传播法在批量数据上的推广. 59
3.4.4 具体的例子. 63
3.5 参数初始化 65
3.6 总结. 68
4 CNN 的基石:卷积层69
4.1 卷积操作. 69
4.1.1 卷积是什么. 69
4.1.2 卷积层效果展示. 73
4.1.3 卷积层汇总了什么 76
4.1.4 卷积的另一种解释 77
4.2 卷积层的反向传播. 79
4.2.1 实力派解法. 80
4.2.2 “偶像派”解法. 84
4.3 ReLU 88
4.3.1 梯度消失问题 89
4.3.2 ReLU 的理论支撑. 92
4.3.3 ReLU 的线性性质. 93
4.3.4 ReLU 的不足. 93
4.4 总结. 94
4.5 参考文献. 94
5 Caffe 入门95
5.1 使用Caffe 进行深度学习训练. 96
5.1.1 数据预处理. 96
5.1.2 网络结构与模型训练的配置. 100
5.1.3 训练与再训练 108
5.1.4 训练日志分析 110
5.1.5 预测检验与分析. 112
5.1.6 性能测试 115
5.2 模型配置文件介绍. 117
5.3 Caffe 的整体结构. 122
5.3.1 SyncedMemory 124
5.3.2 Blob 125
5.3.3 Layer 125
5.3.4 Net 126
5.3.5 Solver 126
5.3.6 多GPU 训练. 127
5.3.7 IO 127
5.4 Caffe 的Layer 128
5.4.1 Layer 的创建——LayerRegistry 128
评分
评分
评分
评分
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有