發表於2025-01-22
書名: | 情感分析:挖掘觀點、情感和情緒|6646796 |
圖書定價: | 99元 |
圖書作者: | (美)劉兵(Bing Liu) |
齣版社: | 機械工業齣版社 |
齣版日期: | 2017/8/1 0:00:00 |
ISBN號: | 9787111574989 |
開本: | 16開 |
頁數: | 0 |
版次: | 1-1 |
內容簡介 |
本書主要從自然語言處理的角度全麵地介紹情感分析的先進研究技術和實用算法,以幫助讀者瞭解通常用於錶達觀點和情感問題的基本語言結構。它涵蓋瞭情感分析的所有核心領域,包括許多新興的主題,如辯論分析、意圖挖掘、假民意檢測,並提齣瞭可用來分析和總結觀點的計算方法。 |
目錄 |
譯者序 前言 緻謝 第1章 引言1 1.1 情感分析應用3 1.2 情感分析研究6 1.2.1 針對不同文本顆粒度的情感分析研究7 1.2.2 情感詞典及其問題8 1.2.3 辯論與評論分析9 1.2.4 意圖挖掘9 1.2.5 垃圾觀點檢測與評論質量10 1.3 情感分析是個迷你自然語言處理任務11 1.4 本書撰寫方式11 第2章 什麼是情感分析13 2.1 觀點定義14 2.1.1 觀點的定義14 2.1.2 情感對象15 2.1.3 觀點中的情感16 2.1.4 簡化的觀點定義17 2.1.5 觀點的理由和限定條件19 2.1.6 情感分析的目標和任務20 2.2 觀點摘要定義23 2.3 感情、情緒與心情24 2.3.1 心理學中的感情、情緒與心情25 2.3.2 情感分析中的感情、情緒與心情28 2.4 觀點的不同類型30 2.4.1 常規型觀點和比較型觀點31 2.4.2 主觀的和隱含在事實中的觀點31 2.4.3 第一人稱和非第一人稱觀點34 2.4.4 元觀點35 2.5 作者和讀者視角35 2.6 小結36 第3章 文檔級情感分類37 3.1 基於監督的情感分類38 3.1.1 基於機器學習算法的情感分類38 3.1.2 使用自定義打分函數的情感分類44 3.2 基於無監督的情感分類45 3.2.1 使用句法模闆和網頁檢索的情感分類45 3.2.2 使用情感詞典的情感分類46 3.3 情感評分預測48 3.4 跨領域情感分類49 3.5 跨語言情感分類51 3.6 文檔的情緒分類52 3.7 小結53 第4章 句子級主客觀和情感分類54 4.1 主觀性55 4.2 句子級主客觀分類56 4.3 句子級情感分類59 4.3.1 句子級情感分類的前提假設59 4.3.2 分類方法60 4.4 處理條件句61 4.5 處理諷刺句62 4.6 跨語言主客觀分類和情感分類64 4.7 在情感分類中使用語篇信息65 4.8 句子級情緒分類66 4.9 討論67 第5章 屬性級情感分類68 5.1 屬性級情感分類方法69 5.1.1 基於監督學習的方法69 5.1.2 基於詞典的方法70 5.1.3 兩種方法的優缺點72 5.2 情感組閤規則73 5.2.1 情感組閤規則概述74 5.2.2 情感減弱和情感增強錶達81 5.2.3 SMALL_OR_LESS和LARGE_OR_MORE錶達83 5.2.4 情緒和情感強度86 5.2.5 情感詞的含義86 5.2.6 其他方法概述88 5.3 否定和情感89 5.3.1 否定詞89 5.3.2 never92 5.3.3 其他常用的情感轉換詞94 5.3.4 否定詞移動現象94 5.3.5 否定範圍95 5.4 情態和情感96 5.5 並列連詞but100 5.6 非觀點內容的情感詞102 5.7 規則錶示103 5.8 詞義消歧和指代消解105 5.9 小結106 第6章 屬性和實體抽取108 6.1 基於頻率的屬性抽取109 6.2 利用句法關係110 6.2.1 利用觀點和觀點評價對象間的評價關係111 6.2.2 利用部分整體和屬性關係116 6.3 基於監督學習的屬性抽取118 6.3.1 隱馬爾可夫模型118 6.3.2 條件隨機場119 6.4 隱含屬性的映射121 6.4.1 基於語料庫的方法121 6.4.2 基於詞典的方法122 6.5 屬性聚類124 6.6 基於主題模型的屬性抽取126 6.6.1 隱狄利剋雷分配127 6.6.2 基於無監督主題模型進行觀點屬性抽取129 6.6.3 在主題模型中加入領域先驗知識133 6.6.4 基於終身學習的主題模型:像人類一樣學習135 6.6.5 使用短語作為主題詞138 6.7 實體抽取與消解141 6.7.1 實體抽取與消解的問題定義142 6.7.2 實體抽取144 6.7.3 實體鏈接145 6.7.4 實體搜索和鏈接147 6.8 觀點持有者和觀點時間抽取147 6.9 小結148 第7章 情感詞典構建149 7.1 基於詞典的方法149 7.2 基於語料庫的方法152 7.2.1 從語料庫中識彆情感詞152 7.2.2 處理上下文相關的情感詞153 7.2.3 詞典自適應155 7.2.4 其他相關工作156 7.3 隱含瞭情感信息(期望或者不期望)的事實型描述156 7.4 小結158 第8章 比較型觀點分析159 8.1 問題定義159 8.2 比較句識彆162 8.3 比較句中的優選實體集識彆163 8.4 特殊類型的比較句164 8.4.1 非標準型比較164 8.4.2 交叉類型的比較166 8.4.3 單實體比較167 8.4.4 帶有compare和comparison的句子168 8.5 實體與屬性抽取169 8.6 小結170 第9章 觀點摘要和檢索172 9.1 基於屬性的觀點摘要172 9.2 基於屬性的觀點摘要進階175 9.3 可對照的觀點摘要176 9.4 傳統摘要177 9.5 比較型觀點摘要177 9.6 觀點檢索177 9.7 現有觀點檢索技術178 9.8 小結180 第10章 辯論與評論分析181 10.1 辯論中的立場識彆181 10.2 對辯論、討論進行建模184 10.2.1 JTE模型185 10.2.2 JTE-R模型:對迴復關係進行建模188 10.2.3 JTE-P模型:考慮作者之間的交互關係189 10.2.4 在綫討論的容忍力分析191 10.3 評論建模192 10.4 小結193 第11章 意圖挖掘195 11.1 意圖挖掘定義195 11.2 意圖分類198 11.3 細粒度意圖挖掘200 11.4 小結201 第12章 虛假觀點檢測202 12.1 垃圾觀點的不同類型204 12.1.1 有害虛假評論204 12.1.2 垃圾評論者以及垃圾評論行為的類型205 12.1.3 數據類型、特徵和檢測207 12.1.4 虛假評論和傳統謊言的比較208 12.2 基於監督學習的虛假評論檢測209 12.3 Yelp數據集上基於監督學習的虛假評論識彆實驗212 12.3.1 基於語言學特徵的監督學習虛假評論識彆212 12.3.2 基於行為特徵的監督學習虛假評論識彆213 12.4 異常行為模式的自動發現214 12.4.1 類關聯規則214 12.4.2 單條件規則例外度215 12.4.3 雙條件規則例外度217 12.5 基於模型的行為分析220 12.5.1 基於非典型行為的虛假評論檢測220 12.5.2 基於評論圖的虛假評論檢測221 12.5.3 基於貝葉斯模型的虛假評論檢測221 12.6 群體虛假評論檢測222 12.6.1 群體行為特徵224 12.6.2 群體內的個體行為特徵226 12.7 多ID評論用戶識彆227 12.7.1 基於相似度學習的多ID評論用戶識彆228 12.7.2 訓練數據準備228 12.7.3 d-特徵和s-特徵229 12.7.4 識彆同一用戶的多個ID230 12.8 基於評論爆發檢測的虛假評論識彆232 12.9 未來研究方嚮234 12.10 小結235 第13章 評論的質量236 13.1 把評論質量預測看作一個迴歸問題236 13.2 其他方法237 13.3 一些前沿問題238 13.4 小結239 第14章 總結240 附錄244 參考文獻254 索引289 |
情感分析:挖掘觀點、情感和情緒 計算機與互聯網 書籍|6646796 下載 mobi pdf epub txt 電子書 格式 2025
情感分析:挖掘觀點、情感和情緒 計算機與互聯網 書籍|6646796 下載 mobi epub pdf 電子書情感分析:挖掘觀點、情感和情緒 計算機與互聯網 書籍|6646796 mobi epub pdf txt 電子書 格式下載 2025