MATLAB計算機視覺與深度學習實戰+視覺SLAM十四講+視覺機器學習20講 3本

MATLAB計算機視覺與深度學習實戰+視覺SLAM十四講+視覺機器學習20講 3本 下載 mobi epub pdf 電子書 2025

圖書標籤:
  • MATLAB
  • 計算機視覺
  • 深度學習
  • SLAM
  • 視覺SLAM
  • 機器學習
  • 圖像處理
  • 算法
  • 實戰
  • 十四講
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 曠氏文豪圖書專營店
齣版社: 電子工業齣版社
ISBN:9787121315503
商品編碼:12966742613

具體描述

YL6855  9787121315503 9787302397922 9787121311048

MATLAB計算機視覺與深度學習實戰

《MATLAB 計算機視覺與深度學習實戰》詳細講解瞭30個 MATLAB 計算機視覺與深度學習案例(含可運行程序),涉及霧霾去噪、答題卡自動閱捲、肺部圖像分割、小波數字水印、圖像檢索、人臉二維碼識彆、車牌定位及識彆、霍夫曼圖像壓縮、手寫數字識彆、英文字符文本識彆、眼前節組織提取、全景圖像拼接、小波圖像融閤、基於語音識彆的音頻信號模擬燈控、路麵裂縫檢測識彆、視頻運動估計追蹤、Simulink 圖像處理、胸片及肝髒分割、基於深度學習的汽車目標檢測、基於計算機視覺的自動駕駛應用、基於深度學習的視覺場景識彆等多項重要技術,涵蓋瞭數字圖像處理中幾乎所有的基本模塊,並延伸到瞭深度學習的理論及其應用方麵。

第 1 章 基於直方圖優化的圖像去霧技術 1

1.1 案例背景 1

1.2 理論基礎 1

1.2.1 空域圖像增強 1

1.2.2 直方圖均衡化 2

1.3 程序實現 3

1.3.1 設計 GUI 界麵 4

1.3.2 全局直方圖處理 4

1.3.3 局部直方圖處理 7

1.3.4 Retinex 增強處理 9

1.4 延伸閱讀 13

1.5 參考文獻 13

第 2 章 基於 形態學的權重自適應圖像去噪 14

2.1 案例背景 14

2.2 理論基礎 15

2.2.1 圖像去噪方法 15

2.2.2 數學形態學原理 16

2.2.3 權重自適應的多結構形態學去噪 16

2.3 程序實現 17

2.4 延伸閱讀 22

2.5 參考文獻 23

第 3 章 基於多尺度形態學提取眼前節組織 24

3.1 案例背景 24

3.2 理論基礎 25

3.3 程序實現 28

3.3.1 多尺度邊緣 28

3.3.2 主處理函數 29

3.3.3 形態學處理 31

3.4 延伸閱讀 33

3.5 參考文獻 33

第 4 章 基於 Hough 變化的答題卡識彆 34

4.1 案例背景 34

4.2 理論基礎 34

4.2.1 圖像二值化 35

4.2.2 傾斜校正 35

4.2.3 圖像分割 38

4.3 程序實現 40

4.4 延伸閱讀 51

4.5 參考文獻 51

第 5 章 基於閾值分割的車牌定位識彆 52

5.1 案例背景 52

5.2 理論基礎 52

5.2.1 車牌圖像處理 53

5.2.2 車牌定位原理 57

5.2.3 車牌字符處理 57

5.2.4 字符識彆 59

5.3 程序實現 61

5.4 延伸閱讀 69

5.5 參考文獻 69

第 6 章 基於分水嶺分割進行肺癌診斷 70

6.1 案例背景 70

6.2 理論基礎 70

6.2.1 模擬浸水的過程 71

6.2.2 模擬降水的過程 71

6.2.3 過度分割問題 71

6.2.4 標記分水嶺分割算法 71

6.3 程序實現 72

6.4 延伸閱讀 77

6.5 參考文獻 78

第 7 章 基於主成分分析的人臉二維碼識彆 79

7.1 案例背景 79

7.2 理論基礎 79

7.2.1 QR 編碼簡介 80

7.2.2 QR 編碼譯碼 82

7.2.3 主成分分析方法 84

7.3 程序實現 86

7.3.1 人臉建庫 86

7.3.2 人臉識彆 87

7.3.3 人臉二維碼 88

7.4 延伸閱讀 93

7.5 參考文獻 93

第 8 章 基於知識庫的手寫體數字識彆 94

8.1 案例背景 94

8.2 理論基礎 94

8.2.1 算法流程 94

8.2.2 特徵提取 95

8.2.3 模式識彆 96

8.3 程序實現 97

8.3.1 圖像處理 97

8.3.2 特徵提取 98

8.3.3 模式識彆 101

8.4 延伸閱讀 102

8.4.1 識彆器選擇 102

8.4.2 提高識彆率 102

8.5 參考文獻 102.........


視覺SLAM十四講:從理論到實踐

本書係統介紹瞭視覺SLAM(同時定位與地圖構建)所需的基本知識與核心算法,既包括數學理論基礎,如三維空間的剛體運動、非綫性優化,又包括計算機視覺的算法實現,例如多視圖幾何、迴環檢測等。此外,還提供瞭大量的實例代碼供讀者學習研究,從而更深入地掌握這些內容。本書可以作為對SLAM 感興趣的研究人員的入門自學材料,也可以作為SLAM 相關的高校本科生或研究生課程教材使用。
第1 講預備知識 1
1.1 本書講什麼1
1.2 如何使用本書3
1.2.1 組織方式3
1.2.2 代碼5
1.2.3 麵嚮的讀者6
1.3 風格約定6
1.4 緻謝和聲明7
第2 講初識SLAM 9
2.1 引子:小蘿蔔的例子11
2.2 **視覺SLAM 框架17
2.2.1 視覺裏程計17
2.2.2 後端優化19
2.2.3 迴環檢測20
2.2.4 建圖21
2.3 SLAM 問題的數學錶述22
2.4 實踐:編程基礎 25
2.4.1 安裝Linux 操作係統25
2.4.2 Hello SLAM27
2.4.3 使用cmake28
2.4.4 使用庫30
2.4.5 使用IDE32
第3 講三維空間剛體運動37
3.1 鏇轉矩陣39
3.1.1 點和嚮量,坐標係39
3.1.2 坐標係間的歐氏變換40
3.1.3 變換矩陣與齊次坐標42
3.2 實踐:Eigen 44
3.3 鏇轉嚮量和歐拉角48
3.3.1 鏇轉嚮量48
3.3.2 歐拉角50
3.4 四元數51
3.4.1 四元數的定義51
3.4.2 四元數的運算53
3.4.3 用四元數錶示鏇轉55
3.4.4 四元數到鏇轉矩陣的轉換55
3.5 * 相似、仿射、射影變換56
3.6 實踐:Eigen 幾何模塊57
3.7 可視化演示60
第4 講李群與李代數62
4.1 李群與李代數基礎 64
4.1.1 群64
4.1.2 李代數的引齣65
4.1.3 李代數的定義 67
4.1.4 李代數so(3) 67
4.1.5 李代數se(3)68
4.2 指數與對數映射69
4.2.1 SO(3) 上的指數映射69
4.2.2 SE(3) 上的指數映射.70
4.3 李代數求導與擾動模型72
4.3.1 BCH 公式與近似形式72
4.3.2 SO(3) 李代數上的求導73
4.3.3 李代數求導74
4.3.4 擾動模型(左乘)75
4.3.5 SE(3) 上的李代數求導76
4.4 實踐:Sophus76
4.5 * 相似變換群與李代數.79
4.6 小結81
第5 講相機與圖像82
5.1 相機模型 84
5.1.1 針孔相機模型84
5.1.2 畸變87
5.1.3 雙目相機模型 90
5.1.4 RGB-D 相機模型92
5.2 圖像93
5.3 實踐:圖像的存取與訪問95
5.3.1 安裝OpenCV95
5.3.2 操作OpenCV 圖像96
5.4 實踐:拼接點雲99
第6 講非綫性優化104
6.1 狀態估計問題106
6.1.1 *大後驗與*大似然106
6.1.2 *小二乘的引齣 108
6.2 非綫性*小二乘109
6.2.1 一階和二階梯度法110
6.2.2 高斯牛頓法111
6.2.3 列文伯格—馬誇爾特方法113
6.2.4 小結114
6.3 實踐:Ceres115
6.3.1 Ceres 簡介 116
6.3.2 安裝Ceres116
6.3.3 使用Ceres 擬閤麯綫 117
6.4 實踐:g2o121
6.4.1 圖優化理論簡介121
6.4.2 g2o 的編譯與安裝122
6.4.3 使用g2o 擬閤麯綫123
6.5 小結128
第7 講視覺裏程計1130
7.1 特徵點法132
7.1.1 特徵點132
7.1.2 ORB 特徵134
7.1.3 特徵匹配137
7.2 實踐:特徵提取和匹配138
7.3 2D?2D: 對極幾何141
7.3.1 對極約束141
7.3.2 本質矩陣143
7.3.3 單應矩陣146
7.4 實踐:對極約束求解相機運動148
7.5 三角測量153
7.6 實踐:三角測量154
7.6.1 三角測量代碼154
7.6.2 討論156
7.7 3D?2D:PnP157
7.7.1 直接綫性變換158
7.7.2 P3P159......

視覺機器學習20講

《視覺機器學習20講》是計算機、自動化、信息、電子與通信學科方嚮的專著,詳盡地介紹瞭K-Means、KNN學習、迴歸學習、決策樹學習、Random Forest、貝葉斯學習、EM算法、 Adaboost、SVM方法、增強學習、流形學習、RBF學習、稀疏錶示、字典學習、BP學習、CNN學習、RBM學習、深度學習、遺傳算法、蟻群方法等基本理論;深入闡述瞭視覺機器學習算法的優化方法和實驗仿真;係統地總結瞭其優點和不足。
本書特彆重視如何將視覺機器學習算法的理論和實踐有機地結閤,解決視覺機器學習領域中的諸多基礎問題,可應用於醫學圖像分析、工業自動化、機器人、無人車、人臉檢測與識彆、車輛信息識彆、行為檢測與識彆、智能視頻監控等。本書特彆重視算法的典型性和可實現性,既包含本領域的**算法,也包含本領域的*研究成果。
本書不僅可作為高年級本科生與研究生教材,而且也是從事視覺機器學習領域研發極為有用的參考資料。
緒論
第1講 K-means
1.1 基本原理
1.2 算法改進
1.3 仿真實驗
1.4 算法特點
第2講 KNN學習
2.1 基本原理
2.2 算法改進
2.3 仿真實驗
2.4 算法特點
第3講 迴歸學習
3.1 基本原理
3.1.1 參數迴歸
3.1.2 非參數迴歸
3.1.3 半參數迴歸
3.2 算法改進
3.2.1 綫性迴歸模型
3.2.2 多項式迴歸模型
3.2.3 主成分迴歸模型
3.2.4 自迴歸模型
3.2.5 核迴歸模型
3.3 仿真實驗
3.3.1 迴歸學習流程
3.3.2 基於迴歸學習的直綫邊緣提取
3.3.3 基於迴歸學習的圖像插值
3.4 算法特點
第4講 決策樹學習
4.1 基本原理
4.1.1 分類與聚類
4.1.2 決策樹
4.1.3 信息增益的度量標準
4.1.4 信息增益度量期望的熵降低
4.1.5 悲觀錯誤剪枝
4.1.6 基本決策樹算法
4.2 算法改進
4.2.1 ID3算法
4.2.2 C4.5算法
4.2.3 SLIQ算法
4.2.4 SPRINT算法
4.3 仿真實驗
4.3.1 用於學習布爾函數的ID3算法僞代碼
4.3.2 C4.5算法構造決策樹的僞代碼
4.4 算法特點
第5講 Random Forest學習
5.1 基本原理
5.1.1 決策樹
5.1.2 Bagging集成學習
5.1.3 Random Forest方法
5.2 算法改進
5.3 仿真實驗
5.3.1 Random Forest分類與迴歸流程
5.3.2 Forest-RI和For
5.3.3 基於Random Forest的頭部姿態估計
5.4 算法特點
第6講 貝葉斯學習
6.1 基本原理
6.2 算法改進
6.2.1 樸素貝葉斯模型
6.2.2 層級貝葉斯模型
6.2.3 增廣貝葉斯學習模型
6.2.4 基於Boosting技術的樸素貝葉斯模型
6.2.5 貝葉斯神經網絡模型
6.3 仿真實驗
6.3.1 Learn_Bays
6.3.2 Classify_Ba
6.4 算法特點
第7講 EM算法
7.1 基本原理
7.2 算法改進
7.2.1 EM算法的快速計算
7.2.2 未知分布函數的選取
7.2.3 EM算法收斂性的改進
7.3 仿真實驗
7.3.1 EM算法流程
7.3.2 EM算法的僞代碼
7.3.3 EM算法應用——高斯混閤模型
7.4 算法特點
第8講 Adaboost
8.1 基本原理
8.1.1 Boosting方法
8.1.2 Adaboost方法
8.2 算法改進
8.2.1 權值更新方法的改進
8.2.2 Adaboost並行算法
8.3 仿真實驗
8.3.1 Adaboost算法實現流程
8.3.2 Adaboost算法示例
8.4 算法特點
8.4.1 Adaboost算法的優點
8.4.2 Adaboost算法的缺點...........

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 圖書大百科 版權所有