綫性代數=Linear-Algebra:英文

綫性代數=Linear-Algebra:英文 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
毛綱源,馬迎鞦,梁敏 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-27

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 華中科技大學齣版社
ISBN:9787568028288
版次:1
商品編碼:12248389
包裝:平裝
叢書名: 普通高等教育“十三五”規劃教材 普通高等院校數學精品教材
開本:16開
齣版時間:2017-12-01
用紙:膠版紙
頁數:280
字數:370000
正文語種:中文


相關圖書





圖書描述

編輯推薦

適讀人群 : 高等院校理工、財經、醫藥、農林等專業大學本科生、研究生,從事綫性代數雙語或英語教學的教師,特彆是準備齣國留學的大學生及高中畢業生
本書可以作為大學數學綫性代數雙語或英語教學教師和準備齣國留學深造學子的參考書。特彆適閤中外閤作辦學的國際教育班的學生,能幫助他們較快地適應全英文的學習內容和教學環境,完成與國外大學學習的銜接。本書在定稿之前已在多個學校作為校本教材試用,而且得到瞭師生的好評。

內容簡介

本書采用學生易於接受的知識結構方式和英語錶述方式,科學、係統地介紹瞭綫性代數的行列式、矩陣、高斯消元法解綫性方程組、嚮量、方程組解的結構、特徵值和特徵嚮量、二次型等知識。強調通用性和適用性,兼顧先進性。本書起點低,難度坡度適中,語言簡潔明瞭,不僅適用於課堂教學使用,同時也適用於自學自習。全書有關鍵詞索引,習題按小節配置,題量適中,題型全麵,書後附有答案。
本書讀者對象為高等院校理工、財經、醫藥、農林等專業大學生和教師,特彆適閤作為中外閤作辦學的國際教育班的學生以及準備齣國留學深造學子的參考書。

作者簡介

毛綱源,武漢理工大學資深教授,畢業於武漢大學,留校任教,後調入武漢工業大學(現閤並為武漢理工大學)擔任數學物理係係主任,在高校從事數學教學與科研工作40餘年,除瞭齣版多部專著(早在1998年,世界科技齣版公司World Scientific Publishing Company就齣版過他主編的綫性代數Linear Algebra的英文教材)和發錶數十篇專業論文外,還發錶10餘篇考研數學論文。
主講微積分、綫性代數、概率論與數理統計等課程。理論功底深厚,教學經驗豐富,思維獨特。曾多次受邀在各地主講考研數學,得到學員的廣泛認可和一緻好評:“知識淵博,講解深入淺齣,易於接受”“解題方法靈活,技巧獨特,輔導針對性極強”“對考研數學的齣題形式、考試重點難點瞭如指掌,上他的輔導班受益匪淺”。
馬迎鞦,北京師範大學珠海分校副教授,畢業於渤海大學,愛爾蘭都柏林大學數學碩士。主講微積分、綫性代數、數學教學論、數學教學設計、數學史與數學文化等課程。在國內外權wei期刊發錶中英文論文10餘篇。
梁敏,北京師範大學珠海分校副教授,畢業於天津大學,美國托萊多大學數學碩士,美國羅格斯大學統計學碩士。主講微積分、綫性代數、概率論與數理統計、商務統計、運籌學等課程。在國內外權wei期刊發錶中英文論文10餘篇。

精彩書評

本書是綫性代數教材,采用全英文編寫,是作者幾十年來在教學一綫工作經驗的總結,在編寫過程中參考瞭國外優秀的英語綫性代數教材,探討瞭適應中國學生學習的一些內容和模式,符閤當前大學數學綫性代數課程英語教學的特點,很具有實用性和針對性。

目錄

Chapter 1 Determinant(1)
1.1 Definition of Determinant(1)
1.1.1 Determinant arising from the solution of linear system(1)
1.1.2 The definition of determinant of order n(5)
1.1.3 Determine the sign of each term in a determinant (8)
Exercise 1.1(10)
1.2 Basic Properties of Determinant and Its Applications(12)
1.2.1 Basic properties of determinant(12)
1.2.2 Applications of basic properties of determinant(15)
Exercise 1.2(19)
1.3 Expansion of Determinant (21)
1.3.1 Expanding a determinant using one row (column)(21)
1.3.2 Expanding a determinant along k rows (columns)(27)
Exercise 1.3(29)
1.4 Cramer’s Rule(30)
Exercise 1.4(36)

Chapter 2 Matrix(38)
2.1 Matrix Operations(38)
2.1.1 The concept of matrices(38)
2.1.2 Matrix Operations(41)
Exercise 2.1(58)
2.2 Some Special Matrices(60)
Exercise 2.2(64)
2.3 Partitioned Matrices(66)
Exercise 2.3(72)
2.4 The Inverse of Matrix(73)
2.4.1 Finding the inverse of an n×n matrix(73)
2.4.2 Application to economics(81)
2.4.3 Properties of inverse matrix (83)
2.4.4 The adjoint matrix A�� (or adjA) of A(86)
2.4.5 The inverse of block matrix(89)
Exercise 2.4(91)
2.5 Elementary Operations and Elementary Matrices(94)
2.5.1 Definitions and properties (94)
2.5.2 Application of elementary operations and elementary matrices(100)
Exercise2.5(102)
2.6 Rank of Matrix(103)
2.6.1 Concept of rank of a matrix(104)
2.6.2 Find the rank of matrix(107)
Exercise 2.6(109)

Chapter 3 Solving Linear System by Gaussian Elimination Method(110)
3.1 Solving Nonhomogeneous Linear System by Gaussian Elimination Method(110)
3.2 Solving Homogeneous Linear Systems by Gaussian Elimination Method(128)
Exercise 3(131)

Chapter 4 Vectors(134)
4.1 Vectors and its Linear Operations(134)
4.1.1 Vectors(134)
4.1.2 Linear operations of vectors(136)
4.1.3 A linear combination of vectors (137)
Exercise 4.1(143)
4.2 Linear Dependence of a Set of Vectors (143)
Exercise 4.2(155)
4.3 Rank of a Set of Vectors(156)
4.3.1 A maximal independent subset of a set of vectors(156)
4.3.2 Rank of a set of vectors(159)
Exercise 4.3(163)

Chapter 5 Structure of Solutions of a System(165)
5.1 Structure of Solutions of a System of Homogeneous Linear Equations (165)
5.1.1 Properties of solutions of a system of homogeneous linear equations(165)
5.1.2 A system of fundamental solutions (166)
5.1.3 General solution of homogeneous system(171)
5.1.4 Solutions of system of equations with given solutions of the system(173)
Exercise 5.1(176)
5.2 Structure of Solutions of a System of Nonhomogeneous Linear Equations(178)
5.2.1 Properties of solutions(178)
5.2.2 General solution of nonhomogeneous equations (179)
5.2.3 The simple and convenient method of finding the system of fundamental solutions and particular solution(183)
Exercise 5.2(189)

Chapter 6 Eigenvalues and Eigenvectors of Matrices(191)
6.1 Find the Eigenvalue and Eigenvector of Matrix(191)
Exercise 6.1(197)
6.2 The Proof of Problems Related with Eigenvalues and Eigenvectors(198)
Exercise 6.2(199)
6.3 Diagonalization(200)
6.3.1 Criterion of diagonalization(200)
6.3.2 Application of diagonalization(209)
Exercise 6.3(210)
6.4 The Properties of Similar Matrices(211)
Exercise 6.4(216)
6.5 Real Symmetric Matrices(218)
6.5.1 Scalar product of two vectors and its basis properties(218)
6.5.2 Orthogonal vector set(220)
6.5.3 Orthogonal matrix and its properties(223)
6.5.4 Properties of real symmetric matrix(225)
Exercise 6.5(229)

Chapter 7 Quadratic Forms (231)
7.1 Quadratic Forms and Their Standard Forms(231)
Exercise 7.1(236)
7.2 Classification of Quadratic Forms and Positive Definite Quadratic(Positive Definite Matrix)(237)
7.2.1 Classification of Quadratic Form(237)
7.2.2 Criterion of a positive definite matrix(239)
Exercise 7.2(241)
7.3 Criterion of Congruent Matrices(242)
Exercise 7.3(245)

Answers to Exercises(246)

Appendix Index(266)

前言/序言

The authors are pleased to see the text of Linear Algebra in English version for Chinese students at the university level. This book not only shows and explains the useful and beautiful knowledge of mathematics, but also presents the structure and arrangement of linear algebra.
1. The Significance of this Book
“One sows a seed in the spring, thousands of grains autumn to him brings.” All the Chinese students had strict training step by step in the study of mathematics before they become a university student. Intuitive and experimental methods are basic and important study patterns, but the target of mathematical education is to form and improve the deductive ability. So far, Chinese students have distinct and excellent achievement in international comparison of mathematics all over the world. As the improvement in educational exchange internationally, more and more Chinese students choose to study abroad at their university level or higher level. Therefore, mathematical textbook on the basis of Chinese students’ mathematical study in English version is urgent needed and essential. This book provides the strong support for the students who will study Economics, Finance, Management, Social Science and so on in local country or abroad.
2. The Difference between Linear Algebra and Calculus
Calculus is mostly about symmetric and beautiful things.One is differentiation, another is its inverse—integration. Calculus can help us to solve the problems in continuous and analog situation in our life. How about other discrete and digital things? Linear algebra can give us help, and vector and matrix are the second type of language we need to study and understand. Study to read a matrix is the most meaningful and key goal in linear algebra, and it gives wide variety for this mathematical area. There are three examples given here:Triangular Matrix,Symmetric Matrix,Orthogonal Matrix.
3. The Structure of this Book
This book organizes the content basis on the logical relationship among number, matrix and vector. It lists the structure from determinant, to matrix, to solve system of linear equations, to vector, to structure of solutions, to eigenvalue and eigenvector, to quadratic form finally.
Here is the structure of this book:
Chapter 1 starts with determinant. There are three important points about the determinant. The first is the definition, the second is property, and the last is its expansion. The Cramer’s rule is given basis on these three points.
Chapter 2 gives all the varieties of matrix. After the study of concept of matrix, it begins with algebra operations, and shows some special matrices. It is following with how to partition matrix, and how to find the inverse of matrix. After given the elementary operations and elementary matrix, this chapter is ended by rank of matrix.
Chapter 3 shows the relationship between matrix and the system of linear equations. Certainly, it is the most important that using matrix to solve the system of linear equations. Gaussian Elimination Method is the most helpful technique.
Chapter 4 beg 綫性代數=Linear-Algebra:英文 下載 mobi epub pdf txt 電子書 格式

綫性代數=Linear-Algebra:英文 mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

綫性代數=Linear-Algebra:英文 下載 mobi pdf epub txt 電子書 格式 2024

綫性代數=Linear-Algebra:英文 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

綫性代數=Linear-Algebra:英文 mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有