机器学习【首届京东文学奖-年度新锐入围作品】

机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
周志华 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

图书介绍

出版社: 清华大学出版社
ISBN:9787302423287
版次:1
商品编码:11867803
品牌:清华大学
包装:平装
开本:16开
出版时间:2016-01-01
用纸:纯质纸


相关图书





图书描述

产品特色

编辑推荐

内容全面;结构合理;叙述清楚;深入浅出。人工智能领域中文的开山之作!


相关图书推荐:

人工智能领域的创新之作,三大主流方法的和谐统一!当今各种人工智能学说的集成创新。

A Must Read for AI

A Must Read for AI


内容简介

机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。

本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。


作者简介

周志华,南京大学计算机系教授,ACM杰出科学家,IEEE Fellow, IAPR Fellow, IET/IEE Fellow, 中国计算机学会会士。国家杰出青年科学基金获得者、长江学者特聘教授。先后担任多种SCI(E)期刊执行主编、副主编、副编辑、编委等。中国计算机学会人工智能与模式识别专业委员会主任,中国人工智能学会机器学习专业委员会主任,IEEE计算智能学会数据挖掘技术委员会副主席。

目录

目录


第1章 1

1.1 引言 1

1.2 基本术 2

1.3 假设空间 4

1.4 归纳偏好 6

1.5 发展历程 10

1.6 应用现状 13

1.7 阅读材料 16

习题 19

参考文献 20

休息一会儿 22



第2章 模型评估与选择 23

2.1 经验误差与过拟合 23

2.2 评估方法 24

2.2.1 留出法 25

2.2.2 交叉验证法 26

2.2.3 自助法 27

2.2.4 调参与最终模型 28

2.3 性能度量 28

2.3.1 错误率与精度 29

2.3.2 查准率、查全率与F1 30

2.3.3 ROC与AUC 33

2.3.4 代价敏感错误率与代价曲线 35

2.4 比较检验 37

2.4.1 假设检验 37

2.4.2 交叉验证t检验 40

2.4.3 McNemar检验 41

2.4.4 Friedman检验与后续检验 42

2.5 偏差与方差 44

2.6 阅读材料 46

习题 48

参考文献 49

休息一会儿 51



第3章 线性模型 53

3.1 基本形式 53

3.2 线性回归 53

3.3 对数几率回归 57

3.4 线性判别分析 60

3.5 多分类学习 63

3.6 类别不平衡问题 66

3.7 阅读材料 67

习题 69

参考文献 70

休息一会儿 72



第4章 决策树 73

4.1 基本流程 73

4.2 划分选择 75

4.2.1 信息增益 75

4.2.2 增益率 77

4.2.3 基尼指数 79

4.3 剪枝处理 79

4.3.1 预剪枝 80

4.3.2 后剪枝 82

4.4 连续与缺失值 83

4.4.1 连续值处理 83

4.4.2 缺失值处理 85

4.5 多变量决策树 88

4.6 阅读材料 92

习题 93

参考文献 94

休息一会儿 95



第5章 神经网络 97

5.1 神经元模型 97

5.2 感知机与多层网络 98

5.3 误差逆传播算法 101

5.4 全局最小与局部极小 106

5.5 其他常见神经网络 108

5.5.1 RBF网络 108

5.5.2 ART网络 108

5.5.3 SOM网络 109

5.5.4 级联相关网络 110

5.5.5 Elman网络 111

5.5.6 Boltzmann机 111

5.6 深度学习 113

5.7 阅读材料 115

习题 116

参考文献 117

休息一会儿 120



第6章 支持向量机 121

6.1 间隔与支持向量 121

6.2 对偶问题 123

6.3 核函数 126

6.4 软间隔与正则化 129

6.5 支持向量回归 133

6.6 核方法 137

6.7 阅读材料 139

习题 141

参考文献 142

休息一会儿 145



第7章 贝叶斯分类器 147

7.1 贝叶斯决策论 147

7.2 极大似然估计 149

7.3 朴素贝叶斯分类器 150

7.4 半朴素贝叶斯分类器 154

7.5 贝叶斯网 156

7.5.1 结构 157

7.5.2 学习 159

7.5.3 推断 161

7.6 EM算法 162

7.7 阅读材料 164

习题 166

参考文献 167

休息一会儿 169



第8章 集成学习 171

8.1 个体与集成 171

8.2 Boosting 173

8.3 Bagging与随机森林 178

8.3.1 Bagging 178

8.3.2 随机森林 179

8.4 结合策略 181

8.4.1 平均法 181

8.4.2 投票法 182

8.4.3 学习法 183

8.5 多样性 185

8.5.1 误差--分歧分解 185

8.5.2 多样性度量 186

8.5.3 多样性增强 188

8.6 阅读材料 190

习题 192

参考文献 193

休息一会儿 196




第9章 聚类 197

9.1 聚类任务 197

9.2 性能度量 197

9.3 距离计算 199

9.4 原型聚类 202

9.4.1 k均值算法 202

9.4.2 学习向量量化 204

9.4.3 高斯混合聚类 206

9.5 密度聚类 211

9.6 层次聚类 214

9.7 阅读材料 217

习题 220

参考文献 221

休息一会儿 224



第10章 降维与度量学习 225

10.1 k近邻学习 225

10.2 低维嵌入 226

10.3 主成分分析 229

10.4 核化线性降维 232

10.5 流形学习 234

10.5.1 等度量映射 234

10.5.2 局部线性嵌入 235

10.6 度量学习 237

10.7 阅读材料 240

习题 242

参考文献 243

休息一会儿 246



第11章 特征选择与稀疏学习 247

11.1 子集搜索与评价 247

11.2 过滤式选择 249

11.3 包裹式选择 250

11.4 嵌入式选择与L$_1$正则化 252

11.5 稀疏表示与字典学习 254

11.6 压缩感知 257

11.7 阅读材料 260

习题 262

参考文献 263

休息一会儿 266




第12章 计算学习理论 267

12.1 基础知识 267

12.2 PAC学习 268

12.3 有限假设空间 270

12.3.1 可分情形 270

12.3.2 不可分情形 272

12.4 VC维 273

12.5 Rademacher复杂度 279

12.6 稳定性 284

12.7 阅读材料 287

习题 289

参考文献 290

休息一会儿 292



第13章 半监督学习 293

13.1 未标记样本 293

13.2 生成式方法 295

13.3 半监督SVM 298

13.4 图半监督学习 300

13.5 基于分歧的方法 304

13.6 半监督聚类 307

13.7 阅读材料 311

习题 313

参考文献 314

休息一会儿 317




第14章 概率图模型 319

14.1 隐马尔可夫模型 319

14.2 马尔可夫随机场 322

14.3 条件随机场 325

14.4 学习与推断 328

14.4.1 变量消去 328

14.4.2 信念传播 330

14.5 近似推断 331

14.5.1 MCMC采样 331

14.5.2 变分推断 334

14.6 话题模型 337

14.7 阅读材料 339

习题 341

参考文献 342

休息一会儿 345



第15章 规则学习 347

15.1 基本概念 347

15.2 序贯覆盖 349

15.3 剪枝优化 352

15.4 一阶规则学习 354

15.5 归纳逻辑程序设计 357

15.5.1 最小一般泛化 358

15.5.2 逆归结 359

15.6 阅读材料 363

习题 365

参考文献 366

休息一会儿 369




第16章 强化学习 371

16.1 任务与奖赏 371

16.2 $K$-摇臂赌博机 373

16.2.1 探索与利用 373

16.2.2 $epsilon $-贪心 374

16.2.3 Softmax 375

16.3 有模型学习 377

16.3.1 策略评估 377

16.3.2 策略改进 379

16.3.3 策略迭代与值迭代 381

16.4 免模型学习 382

16.4.1 蒙特卡罗强化学习 383

16.4.2 时序差分学习 386

16.5 值函数近似 388

16.6 模仿学习 390

16.6.1 直接模仿学习 391

16.6.2 逆强化学习 391

16.7 阅读材料 393

习题 394

参考文献 395

休息一会儿 397



附录 399

A 矩阵 399

B 优化 403

C 概率分布 409


后记 417


索引 419


前言/序言

这是一本面向中文读者的机器学习教科书,为了使尽可能多的读者通过本书对机器学习有所了解,作者试图尽可能少地使用数学知识。然而,少量的概率、统计、代数、优化、逻辑知识似乎不可避免。因此,本书更适合大学三年级以上的理工科本科生和研究生,以及具有类似背景的对机器学习感兴趣的人士。为方便读者,本书附录给出了一些相关数学基础知识简介。
全书共16章,大体上可分为3个部分:第1部分包括第1~3章,介绍机器学习基础知识;第2部分包括第4~10章,介绍一些经典而常用的机器学习方法;第3部分包括第11~16章,介绍一些进阶知识。前3章之外的后续各章均相对独立,读者可根据自己的兴趣和时间情况选择使用。根据课时情况,一个学期的本科生课程可考虑讲授前9章或前10章;研究生课程则不妨使用全书。
书中除第1章外,每章都给出了十道习题。有的习题是帮助读者巩固本章学习,有的是为了引导读者扩展相关知识。一学期的一般课程可使用这些习题,再辅以两到三个针对具体数据集的大作业。带星号的习题则有相当难度,有些并无现成答案,谨供富有进取心的读者启发思考。
本书在内容上尽可能涵盖机器学习基础知识的各方面,但作为机器学习入门读物且因授课时间的考虑,很多重要、前沿的材料未能覆盖,即便覆盖到的部分也仅是管中窥豹,更多的内容留待读者在进阶课程中学习。为便于有兴趣的读者进一步钻研探索,本书每章均介绍了一些阅读材料,谨供读者参考。
笔者以为,对学科相关的重要人物和事件有一定了解,将会增进读者对该学科的认识。本书在每章最后都写了一个与该章内容相关的小故事,希望有助于读者增广见闻,并且在紧张的学习过程中稍微放松调剂一下。
书中不可避免地涉及大量外国人名,若全部译为中文,则读者在日后进一步阅读文献时或许会对不少人名产生陌生感,不利于进一步学习。
因此,本书仅对一般读者耳熟能详的名字如“图灵”等加以直接使用,对故事中的一些主要人物给出了译名,其他则保持外文名。
机器学习发展极迅速,目前已成为一个广袤的学科,罕有人士能对其众多分支领域均有精深理解。笔者自认才疏学浅,仅略知皮毛,更兼时间和精力所限,书中错谬之处在所难免,若蒙读者诸君不吝告知,将不胜感激。


机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi epub pdf txt 电子书 格式

机器学习【首届京东文学奖-年度新锐入围作品】 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi pdf epub txt 电子书 格式 2024

机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变一如既往地按正常时间送到客户手上,所以必须32个赞!我家在六楼,没有电梯一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变一如既往地按正常时间送到客户手上,所以必须32个赞!我家在六楼,没有电梯,是楼梯房,每次都不怕辛苦还很耐心地送货上楼,不管东西有多少

评分

1.我看了60多页了,很多知识如走马观花一样一点而过,没有详细讲解语法流转,全靠悟。有好些语句自己用了pychrm的诊断才弄明白。

评分

不推荐新手入门,原因如下:

评分

商品非常好,但是我有句心里话要说:

评分

商品非常好,但是我有句心里话要说:

评分

几年前逛京东还不是那么的信任京东,现在信赖首选京东默默哒一直看着它一年一年发展的越来越好,心里也在为京东发展壮大而加油打气。为什么我喜欢京东购物,因为可以当天买自己喜欢的商品,阴天就可以到达客户的家中,为什么我所有的评价都相同,因为在京东买的东西太多太多,商品积累的太多没有评价,最佩服的,还是京东物流,有时晚上11点前动动手指,购买的商品,第二天上午就送到单位或者家里,还可以刷卡付款。自营的商品挺有保证,售后,有问题打专属客服热线。客服很赞,一句话的事儿,直接上门取件退,上门更换新商品,家电有价保,一个月退货,半年换货,实体店儿弱爆了,根本没有竞争力与京东相提并论;比老家的商铺街上的价格省了一大截票子哈

评分

3.论坛上提问也需要乱七八糟的条件,最好开通论坛VIP。

评分

1.我看了60多页了,很多知识如走马观花一样一点而过,没有详细讲解语法流转,全靠悟。有好些语句自己用了pychrm的诊断才弄明白。

评分

  本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。

类似图书 点击查看全场最低价

机器学习【首届京东文学奖-年度新锐入围作品】 mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有