Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition]

Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
Luis,Pedro,Coelho,Willi,Richert 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-22

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 東南大學齣版社
ISBN:9787564160623
版次:1
商品編碼:11830194
包裝:平裝
外文名稱:Building Machine Learning Systems With Python Second Edition
開本:16開
齣版時間:2016-01-01
用紙:膠版紙
頁數:301
字數:397000#


相關圖書





圖書描述

內容簡介

  運用機器學習獲得對於數據的深入洞見,是現代應用開發者和分析師的關鍵技能。Python是一種可以用於開發機器學習應用的語言。作為一種動態語言,它可以進行快速探索和實驗。利用其的開源機器學習庫,你可以在快速嘗試很多想法的同時專注於手頭的任務。
  《Python語言構建機器學習係統(第2版 影印版 英文版)》展示瞭如何在原始數據中尋找模式的具體方法,從復習Python機器學習知識和介紹程序庫開始,你將很快進入應對正式而真實的數據集項目環節,運用建模技術,創建推薦係統。然後,《Python語言構建機器學習係統(第2版 影印版 英文版)》介紹瞭主題建模、籃子分析和雲計算等高級主題。這些內容將拓展你的能力,讓你能夠創建大型復雜係統。
  有瞭《Python語言構建機器學習係統(第2版 影印版 英文版)》,你就能獲得構建自有係統所需的工具和知識,定製化解決實際的數據分析相關問題。

目錄

Preface
Chapter 1: Getting Started with Python Machine Learning
Machine learning and Python - a dream team
What the book will teach you (and what it will not)
What to do when you are stuck
Getting started
Introduction to NumPy, SciPy, and matplotlib
Installing Python
Chewing data efficiently with NumPy and intelligentlywith SciPy
Learning NumPy
Indexing
Handling nonexisting values
Comparing the runtime
Learning SciPy
Our first (tiny) application of machine learning
Reading in the data
Preprocessing and cleaning the data
Choosing the right model and learning algorithm
Beforebuilding our first model...
Starting with a simple straight line
Towards some advanced stuff
Stepping back to go forward - another look at our data
Training and testing
Answering our initial question
Summary

Chapter 2: Classifying with Real-world Examples
The Iris dataset
Visualization is a good first step
Building our first classification model
Evaluation - holding out data and cross-validation
Building more complex classifiers
A more complex dataset and a more complex classifim
Learning about the Seeds dataset
Features and feature engineering
Nearest neighbor classification
Classifying with scikit-learn
Looking at the decision boundaries
Binary and multiclass classification
Summary

Chapter 3: Clustering - Finding Related Posts
Measuring the relatedness of posts
How not to do it
How to do it
Preprocessing - similarity measured as a similar number of common words
Converting raw text into a bag of words
Counting words
Normalizing word count vectors
Removing less important words
Stemming
Stop words on steroids
Our achievements and goals
Clustering
K-means
Getting test data to evaluate our ideas on
Clustering posts
Solving our initial challenge
Another look at noise
Tweaking the parameters
Summary

Chapter 4: Topic Modeling
Latent Dirichlet allocation
Building a topic model
Comparing documents by topics
Modeling the whole of Wikipedia
Choosing the number of topics
Summary

Chapter 5: Classification - Detecting Poor Answers
Sketching our roadmap
Learning to classify classy answers
Tuning the instance
Tuning the classifier
Fetching the data
Slimming the data down to chewable chunks
Preselection and processing of attributes
Defining what is a good answer
Creating our first classifier
Starting with kNN
Engineering the features
Training the classifier
Measuring the classifier's performance
Designing more features
Deciding how to improve
Bias-variance and their tradeoff
Fixing high bias
Fixing high variance
High bias or low bias
Using logistic regression
A bit of math with a small example
Applying logistic regression to our post classification problem
Looking behind accuracy- precision and recall
Slimming the classifier
Ship it!
Summary

Chapter 6: Classification II - Sentiment Analysis
Sketching our roadmap
Fetching the Twitter data
Introducing the Naive Bayes classifier
Getting to know the Bayes' theorem
Being naive
Using Naive Bayes to classify
Accounting for unseen words and other oddities
Accounting for arithmetic underflows
Creating our first classifier and tuning it
Solving an easy problem first
Using all classes
Tuning the classifier's parameters
Cleaning tweets
Taking the word types into account
Determining the word types
Successfully cheating using SentiWordNet
Our first estimator
Putting everything together
Summary

Chapter 7: Regression
Predicting house prices with regression
Multidimensional regression
Cross-validation for regression
Penalized or regularized regression
L1 and L2 penalties
Using Lasso or ElasticNet in scikit-learn
Visualizing the Lasso path
P-greater-than-N scenarios
An example based on text documents
Setting hyperparameters in a principled way
Summary

Chapter 8: Recommendations
Rating predictions and recommendations
Splitting into training and testing
Normalizing the training data
A neighborhood approach to recommendations
A regression approach to recommendations
Combining multiple methods
Basket analysis
Obtaining useful predictions
Analyzing supermarket shopping baskets
Association rule mining
More advanced basket analysis
Summary

Chapter 9: Classification - Music Genre Classification
Sketching our roadmap
Fetching the music data
Converting into a WAV format
Looking at music
Decomposing music into sine wave components
Using FFT to build our first classifier
Increasing experimentation agility
Training the classifier
Using a confusion matrix to measure accuracy in
multiclass problems
An alternative way to measure classifier performance
using receiver-operator characteristics
Improving classification performance with Mel
Frequency Cepstral Coefficients
Summary

Chapter 10: Computer Vision
Introducing image processing
Loading and displaying images
Thresholding
Gaussian blurring
Putting the center in focus
Basic image classification
Computing features from images
Writing your own features
Using features to find similar images
Classifying a harder dataset
Local feature representations
Summary

Chapter 11: Dmensionality Reduction
Sketching our roadmap
Selecting features
Detecting redundant features using filters
Correlation
Mutual information
Asking the model about the features using wrappers
Other feature selection methods
Feature extraction
About principal component analysis
Sketching PCA
Applying PCA
Limitations of PCAand how LDA can help
Multidimensional scaling
Summary

Chapter 12: Bigger Data
Learning about big data
Using jug to break up your pipeline into tasks
An introduction to tasks in jug
Looking under the hood
Using jug for data analysis
Reusing partial results
Using Amazon Web Services
Creating your first virtual machines
Installing Python packages on Amazon Linux
Running jug on our cloud machine
Automating the generation of clusters with StarCluster
Summary

Appendix: Where to Learn More Machine Learning
Online courses
Books
Question and answer sites
Blogs
Data sources
Getting competitive
All that was left out
Summary
Index

前言/序言


Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] 下載 mobi epub pdf txt 電子書 格式

Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] 下載 mobi pdf epub txt 電子書 格式 2024

Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

這本書是全英文的,讀起來稍微有點吃力,如果對專業術語不太熟悉的話,嗯,有一個缺點就是這個書的紙張的味道非常大,很受不瞭

評分

不錯,英文原版書看起來要簡單一些

評分

hao de

評分

東西不錯,挺值的

評分

非常不錯的書,很滿意………………

評分

很不錯的書,很經典

評分

好書,很有用的,值得好好學習

評分

買書一直在京東,正版,價格優惠,不錯!

評分

不錯,推薦,用python學習機器學習

類似圖書 點擊查看全場最低價

Python 語言構建機器學習係統 第2版(影印版) [Building Machine Learning Systems With Python Second Edition] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有