有限元方法(英文版) [Finite Element Methods]

有限元方法(英文版) [Finite Element Methods] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
石钟慈,王鸣 编



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-25

类似图书 点击查看全场最低价

图书介绍

出版社: 科学出版社
ISBN:9787030376213
版次:01
商品编码:11296973
包装:精装
外文名称:Finite Element Methods
开本:16开
用纸:胶版纸
页数:386
正文语种:英文


相关图书





图书描述

内容简介

  《有限元方法(英文版)》系统地论述了有限元方法的数学基础理论。以椭圆偏微分方程边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。

内页插图

目录

Preface to the Series in Information and Computational Science
Preface
Chapter 1Variational Principle
1.1 Sobolev Space
1.2 Poisson Equation
1.2.1 Dirichlet Problem
1.2.2 Neumann Problem
1.3 Biharmonic Equation
1.4 Abstract Variational Problem
1.5 Galerkin Method and Ritz Method

Chapter 2 Finite Element and Finite Element Space
2.1 Triangulation
2.2 Finite Element
2.3 Finite Element Space
2.4 Second Order Problem: Simplex Elements
2.4.1 Simplex Element of Degreek
2.4.2 Linear Simplex Element
2.4.3 Quadric Simplex Element
2.4.4 Cubic Simplex Element
2.4.5 Incomplete Cubic Simplex Element
2.4.6 Crouzeix-Raviart Element
2.4.7 Cubic Hermite Simplex Element
2.4.8 Zienkiewicz Element
2.5 Second Order Problem: Rectangle Elements
2.5.1 Rectangle Element of Type(k)
2.5.2 Incomplete Rectangle Element of Type(2)
2.5.3 Wilson Element
2.5.4 Rectangle C-R Element
2.6 Fourth Order Problem: Simplex Elements
2.6.1 Morley Element
2.6.2 Zienkiewicz Element
2.6.3 Morley-Zienkiewicz Element
2.6.4 Modified Zienkiewicz Element
2.6.5 12-parameter Triangle Plate Element
2.6.6 15-parameter Triangle Plate Element
2.6.7 Argyris Element
2.6.8 Bell Element
2.6.9 Cubic Tetrahedron Element
2.7 Fourth Order Problem: Rectangle Elements
2.7.1 Rectangle Morley Element
2.7.2 Adini Element
2.7.3 Bogner-Fox-Schmit Element
2.8 2m-th Order Problem: MWX Element

Chapter 3 Interpolation Theory of Finite Elements
3.1 Affine Mapping and Affine Family
3.2 Affine Continuity and Scale Invariance
3.3 Interpolation Error
3.4 Inverse Inequality
3.5 Approximate Error of Finite Element Spaces
3.6 Interpolation Error of General Element

Chapter 4 Conforming Finite Element Method
4.1 Poisson Equation
4.2 Plate Bending Problem
4.3 A Posteriori Error Estimate

Chapter 5 Nonconforming Finite Element Methods
5.1 Nonconforming Finite Element
5.2 Weak Continuity
5.3 Second Order Elliptic Problem
5.4 Fourth Order Elliptic Problem
5.5 2m-th Order Elliptic Problem
5.6 A Posteriori Error Estimate
5.7 Error Estimate in L2 Norm

Chapter 6 Convergence of Nonconforming Finite Element
6.1 Generalized Path Test
6.2 Patch Test
6.2.1 Patch Test
6.2.2 Weak Patch Test
6.2.3 Sufficiency of Patch Test
6.2.4 Necessity of Patch Test
6.3 Counter Examples of Patch Test
6.4 F-E-M Test
……

Chapter 7 Quasi-Conforming Element Method
Chapter 8 Unconventional Finite Element Method
Chapter 9 Double Set Parameter Method
Chapter 10 Property of Finite Element Space
Chapter 11 L∞ Error Estimate for Second Order Problem
Chapter 12 L∞ Error Estimate for Plate Bending Problem
Bibliography
Index

前言/序言

  The finite element method has achieved a great deal of success in many fields since itwas first suggested in the structural analysis in the fifth decade oflast century. Todayit is a powerful numerical tool solving partial differential equations. The scholars inour country contributed much to the foundation and development of finite elementmethod. Feng's work is original, independent of the West, to the foundation of thefinite element method.
  The basic idea of the finite element method is using discrete solutions on finiteelement spaces to approximate the continuous solutions on infinite dimensional space V according to the variational principle. The typical steps of constructing finiteelement spaces are the following.
  (1) The domain S2, the continuous solution defined on, is subdivided into somesubdomains, which are called elements.
  (2) On each element, an m-dimensional polynomial space and m nodal parame-ters are selected, such that each polynomial in the space is determined uniquely bya group of nodal parameters. The function values and derivatives at some points onthe element are often taken as the nodal parameters.
  (3) A piecewise polynomial space Vh. on domain l2, called finite element space,is obtained by linking the nodal parameters on elements in some way.
  For the mathematical foundation of the finite element method, there is a well-known result:
  The approximation of jinite elefme,nt solutioln to the treal solution is dependenton the approximation of jVnite element space Vh, to the space V, provided Vt is asubspace of V.
  The approximate property of the finite element spaces can be dealt with by theinterpolation theory of the finite elements.
有限元方法(英文版) [Finite Element Methods] 下载 mobi epub pdf txt 电子书 格式

有限元方法(英文版) [Finite Element Methods] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

有限元方法(英文版) [Finite Element Methods] 下载 mobi pdf epub txt 电子书 格式 2024

有限元方法(英文版) [Finite Element Methods] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

不错不错。

评分

It requires a lot of efforts.

评分

不错不错。

评分

不错不错。

评分

It requires a lot of efforts.

评分

不错不错。

评分

不错不错。

评分

It requires a lot of efforts.

评分

不错不错。

类似图书 点击查看全场最低价

有限元方法(英文版) [Finite Element Methods] mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.qciss.net All Rights Reserved. 图书大百科 版权所有